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massive po- tential in many areas such as medicine, telecommunications, radar, and sonar systems. Although very

successful, compressive sensing is not yet fully developed and implemented in underwater acoustics. Acoustic signals

transmitted through water introduce many complex characteristics making their analysis challenging and di�cult. The

process of transmitting and receiving signals through shallow water environment is a representative example of a signal

transmission through dispersive channel.

The non-stationary nature of such signals leads to the time-frequency signal analysis

as well developed theory suitable for non-stationary signal processing. Within the compressive sensing framework, it is
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compressive sensing based reconstruction, including a reduced set of measurements or highly corrupted samples and

real-world scenario setup. All of the presented theoretical results are followed by numerous examples. Application of
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presented as an example that developed tools and theoretical results are important not only for underwater acoustic
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systems. Although very successful, compressive sensing is not yet fully developed and implemented in underwater

acoustics. Acoustic sig- nals transmitted through water introduce many complex characteristics making their analysis

challenging and di�cult. The process of transmitting and receiving signals through shallow water environment is a

representative example of a signal transmis- sion through dispersive channel. The

non-stationary nature of such signals leads to the time-frequency signal analysis

as well developed theory suitable for non-stationary signal processing. Within the compressive sensing framework, it is

important to em- phasize that the non-stationary signals are only approximately sparse or nonsparse in the

corresponding transformation domain. Since the compressive sensing reconstruc- tion methods intrinsically relies on

the sparsity, the reconstruction of approximately sparse or non-sparse signals will produce an error that should be

considered in the calculations and applications. The main contributions of this thesis are in extending and adjusting the

compressive sensing methods and results to the non-stationary sig- nals, with application to the acoustic and sonar

signals. This can include dispersive media propagation. In particular, the exact expected error of the reconstruction of

non-stationary signals in time-frequency analysis using the compressive sensing meth- ods is derived. The

decomposition and reconstruction of signals in sonar systems and dispersive underwater channels using time-

frequency approaches are presented. Various sequences used in the sonar imaging are considered from the point of the

compressive sensing based reconstruction, including a reduced set of measurements or highly cor- rupted samples and

real-world scenario setup. All of the presented theoretical results are followed by numerous examples. Application of

the proposed methods and obtained theoretical results to image reconstruction and denoising problems is also

presented as an example that developed tools and theoretical results are important not only for underwater acoustic

systems. The algorithms used to achieve the main results in the thesis are given in the Appendix. i Acknowledgements I
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between original and reconstructed image “Lena” for various quality factor QF and percentage of

corrupted pixels.

. . . . 101 PSNR and SSIM for the reconstruction of the eight

test images. The results are obtained by the proposed, two-stage adaptive algorithm and total

variation L1

method. . . . . . . . . . . . . . . . . . . . . . . . . . 101 Statistical and theoretical calculations of the PSNR for 8 test images in Fig.

5.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 xi List of Acronyms and Abbreviations 2D-DCT 2D-DFT AC AF CAZAC

CoSaMP CS DCT DFT DWT DOA DPFT ECG EEG FPGA FT IHT ISAR ISTA JPEG LASSO LFM LPFT MAE MF Two-

Dimensional Discrete Cosine Transform Two-Dimensional Discrete Fourier Transform Auto-Correlation Ambiguity

Function Constant Amplitude Zero Autocorrelation Compressive sampling

matching pursuit Compressive Sensing Discrete Cosine Transform Discrete Fourier

Transfrom Discrete Wavelet

Transfrom Direction Of Arrival Dual Polynomial Fourier Transform Electrocardiogram Electroencephalogram Field

Programmable Gate Arrays Fourier Transform Iterative Hard Thresholding Inverse Synthetic Aperture Radar Iterative

Shrinkage Thresholding Algorithm Joint Photographic Experts Group Least Absolute Shrinkage and Selection Operator

Linear Frequency Modulated Local Polynomial Fourier Transform Mean Absolute Error Matched Filter xiii MRI MSE

MUSIC OMP PFT PSNR PWD RIP SAR SM SNR SSIM SSP TV-L1 STFT QF WT Magnetic Resonance Imaging Mean

Squared Error Multiple Signal Classi�cation Orthogonal Matching Pursuit Polynomial Fourier Transform Peak Signal to

Noise Ratio Pseudo Wigner Distribution Restricted Isometry Property Synthetic Aperture Radar S-Method Signal to

Noise Ratio Structural Similarity Sparse Signal Processing Total Variation L1 Short-Time Fourier Transform Quality

Factor Wavelet Transform Intro duction In recent years, compressive sensing had an enormous breakthrough in the

signal pro- cessing community as a successful sampling and reconstruction method for signals in various areas. The

idea of using a small number of randomly positioned observations for signal acquisition improves e�ciency od signal

processing systems in terms of storage, memory, and transmission. Accurate recovery of signals with a reduced set of

measure- ments is the primary goal

of compressive sensing and sparse signal processing. De�ning the domain of sparsity of

a signal
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is the �rst step to be considered for application of compressive sensing to speci�c signal. Each of the signals and their

sparsity domains has characteristics that are important for de�ning the method that should be used for their proper

recovery. Many signals can be represented as sparse in some representa- tion domain, resulting in compressive sensing

showing a huge potential originally in medicine, and then later in many other �elds, such as communications,

meteorology, remote sensing, image processing, and radar and sonar systems. Although very successful, the idea of

compressive sensing is still challenging for research and developing in many application areas, including the

underwater acoustics �eld. Acoustic signals transmission through the water introduce many complex charac- teristics

that are very di�cult for analysis. Most of the problems occur in the process of transmitting and receiving signals in

water due to its dispersive media properties. This is especially exhibited in shallow water environments, as a

representative exam- ple of dispersive channels. The dispersivity produces multiple nonlinear components, changing the

very nature of the original transmitted signals. The non-stationary nature of such signal components makes them

suitable for the analysis using time-frequency tools. In the compressive sensing sense, non-stationary signals are only

approximately sparse or nonsparse in the most of the common transformation domains. Such sig- nals, when

reconstructed under the sparsity assumption, will produce errors in the reconstruction procedure. This error highly

depends on the sampling method and the sparsity domain of the analyzed signal. The exact error is of great importance

for further improvement of the reconstruction performance in prospective. Except for the dispersive systems, time-

varying nonsparse signals can also be found in the process- ing of many other areas, such as audio signals, images,

radar systems, and wideband sonar images, where the processing under the sparsity assumption requires appropriate

analysis of the reconstruction results. The problem of approximative sparsity is intrinsically built in the area of compres-

sive sensing based reconstruction of targets in sonar images. In real-world cases, the sonar signals are positioned off-

grid in the transformation domain, which makes them nonsparse in their nature. The problem of �nding a sequence

suitable for the transmis- sion, as well as developing the proper theory behind the detection and reconstruction of

targets, is a topic of great importance for theory and practice in sonar systems. 1 2 Introduction Considering that only a

few target points (or few targets) commonly are of the interest in the sonar images, the idea of compressive sensing

can successfully be applied in their reconstruction. The compressive sensing methods can be suited and used for

effective localization of the underwater targets in sonar systems. The dispersive characteristics of the underwater

environment is of crucial impor- tance in the underwater acoustics and signal processing. A typical example of a dis-

persive media is the shallow water environment since most activities are performed in waters with deep less than 200

meters. From the signal processing view, a dis- persive channel introduces many complex nonstationary components

during the signal transmission. It is essential to recognize, decompose, and reconstruct such components (modes)

truthfully, for a better understanding of the environment in which the signal is transmitted. Although challenging, the

theory of compressive sensing with appropri- ate transformation domain, adjusted to the complex nature of the signal

modes, can provide an effective reconstruction of the strongest modes. Three key problems which are considered in

this thesis are: 1. exact error calculation in the reconstruction procedure in compressive sensing (only error bound were

given in the existing literature); 2. reconstruction of sonar images within the compressive sensing framework using

various sequences for transmitted signal (so far only basic sequence forms were used in the literature, applied on the

real data); 3. the problem of decomposition of signals in dispersive channels (with a robust method for such an

requirement). One of the aims of this thesis is to ful�ll the gaps of using the compressive sensing techniques in

underwater acoustic and sonar systems with appropriate and exact recon- struction performance analysis, which can

also serve as a basis for a further direction in implementation of these techniques in other signal processing �elds. The
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contribution of this thesis can be divided into three major parts: • Analysis of nonsparsity – Many signals, especially

non-stationary and signals arriving from a dispersive environment are not strictly sparse in their correspond- ing

transformation domains. They should be considered as approximately sparse or nonsparse signals, meaning that all

components cannot be exactly reconstructed with compressive sensing methods. The expected reconstruction error

caused by the nonreconstructed components is derived and exactly calculated. This helps further investigation on the

quality of the reconstruction of various signals. The problem of quantization (digitization) of measurements is

considered within the context of additive noise and signal nonsparsity. • Reconstruction of sonar signals – The

wideband sonar images can be re- constructed using different sequence forms. An extensive analysis of different

sequence forms within the compressive sensing reconstruction framework is done Introduction 3 with appropriate

comparison and directions how to achieve an improved recovery of sonar images. The time-varying cross-range, as a

challenging topic that causes sonar image smearing, was additionally analyzed, as a complex parameter in the analysis

of such signals. Gathering of real data and their reconstruction helped further justi�cation of the presented analysis. •

Sparse decomposition of signals in dispersive channels – A novel approach to the decomposition of signals received in

the dispersive channel is introduced. The method is based on the time-frequency representations derived from polyno-

mial extension of Fourier transform. High-resolution and model-based techniques are considered for the analysis of

received signals in such channels. The methods presented for sonar imaging can be applied to general problems in

image processing.

A method for denoising and reconstruction of sparse images based on a gradient-descent

algorithm is

developed as an example. Unlike common image reconstruction methods, the advantage of this method is that the

uncorrupted pixels remain unchanged in the reconstruction process. The noisy pixels are blindly detected and

reconstructed using compressive sensing approach by assuming (and not explicitly imposing) the image sparsity. The

thesis is organized as follows. The background theory on signal processing and the compressive sensing theory are

presented in Chapter 2. The analysis of nonspar- sity, together is presented in Chapter 3. Chapter 4 presents the analysis

of different sequences and their application in compressive sensing, for a successful reconstruction of sonar signals.

The background of shallow water environment, together with the techniques for sparse decomposition of the received

signals in dispersive channels is an- alyzed in Chapter 5. Additional work on the topic of image denoising using

compressive sensing techniques is introduced in the Chapter 6. Chapter 7 concludes the thesis, with the brief

description of presented results and discussion on future work. Chapter 1 Background theory Contents 1.1 Signal

representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1.1 Discrete Fourier transform (DFT) . . . . . . . . . . . . . . . . . . . . . . 1.1.2

Time-varying signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 7 8 1.2 1.2.1 Measurements of sparse signals . . . . . . . . . . . . . .

. . . . . . . . . . 10 1.2.2 Measurement matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.3 Problem formulation . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . 13 Compressive sensing and sparse signal processing . . . . . . . . . . . . 10 1.3 Problem solutions . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Reconstruction algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Conditions for

reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 17 Signal processing, as such, was introduced in the 1960s, and became

one of the most important tools for the analysis of signals and corresponding information. Al- though introduced in the

20th century, the basics on which the analysis lies are known mathematical formulations for many centuries earlier. Its

use is mostly related to the introduction of computers we know today (such as the Fourier series and transform).

However, due to their rapid development, the digitalization of the world is inevitable. The data which should be stored

became massive. That is why the techniques devel- oped earlier are helpful, yet not enough. In recent years, it has be

seen that numerous signals are of sparse nature in a speci�c representation domain. New technologies have been

introduced, based on compressing those signals and trying to keep the original information in their full meaning. These

technologies can be summarized under the theory of compressive sensing, which is based on sparse signal processing.

In this Chapter the fundamental theory and notations used throughout this thesis are presented. The basics of signals

and their representations in a transformation domain are introduced with the method of time-varying signals. It also

introduces the background of compressive sensing and sparse signal processing. A basic yet effective reconstruction

algorithm, which will be used through the thesis, is explained. Finally, the conditions necessary for a successful and

unique reconstruction of sparse signals are presented. 5 Chapter 1. Background theory 1.1 Signal representation

Consider a time-domain

signal x(t) of duration Ts. Its samples x(n∆t) are within the sampling

interval ∆t = Ts/N . The sampling interval satis�es the traditional sampling theorem. The traditional sampling theorem

was introduced in few occasions [1–4], and states that

a signal can be fully recovered if its sampling frequency fs is at least twice as high

as the maximum signal frequency

fmax, i.e. fs > 2fmax. (1.1) Any discrete one-dimensional signal x(n) = x(n∆t) of length N , n = 0, 1, . . . , N − 1, can be

written in the vector form

as x = [x(0), x(1), . . . , x(N − 1)]T , (1.2) where T is the transpose operation.

Examples of one-dimensional signals can be found in a large number of everyday applications, including audio, speech,

sonar, radar, vari- ous environment sensing and biomedical signals (such as the electrocardiogram - ECG and

electroencephalogram - EEG). The sampling theory can be extended to two-dimensional signals. Examples of two-

dimensional signals are photos, radar/sonar images, biomedical images (such as magnetic resonance imaging - MRI),

and many others. A two-dimensional signal of size N × M is represented in a matrix
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form as x( 0, 0) x(0, 1) · · · x(0, M − 1) x=⎡ x (1,

0) x(1, 1) · · · x(1,

M − 1) . . . . . . ⎤  . (1. 3) ⎢ x (N − 1, 0) x (M − 1, 1) · · · x (N − 1, M − 1)

⎣ ⎥ In the two-dimensional case, the sampling frequency has to satisfy the sampling relation ⎦ for each considered

sampling direction. In the theory, signals are commonly analyzed and processed in a certain represen- tation

(transformation) domain. Depending on its nature, the transform is suited for a speci�c type of the signal. The most

common transformation domains are the dis- crete

Fourier transform (DFT), discrete wavelet transform (DWT), and discrete cosine transform (DCT).

For the case of radar and

sonar signals, the representation domains are related to speci�c sequences that will be explained along with this

application �eld. In general, the transformation of a one-dimensional signal from one domain to another one can be

presented using the matrix relations X = Φx (1.4)

where Φ is the transformation matrix and X is the signal transform vector

X =

[X (0), X (1), . . . , X (N − 1)] T , (1. 5) 1.1.

Signal representation considering the length to be N . The inverse transform provides the relation between the

transformation and the signal as x = ΨX = Φ−1X (1.6) with the common orthonormal transformation domains relation

Φ−1 = ΦH , where H is the complex-conjugate and transpose (Hermitian) matrix. In general, the full transformation and

inverse transformation matrices are given by φ0(0) φ1(0) · · · φN−1(0) Φ=⎡ φ0(1) φ1(1) · · · φN

−1(1) . . . . . . ⎤ , (1. 7) φ0 (N − 1) φ1 (N − 1) · · · ψN −1(N − 1)

⎣ ⎢ ⎥ and ⎦
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ψ0(0) ψ1(0) · · · ψN−1(0) Ψ = ⎡ ψ0(1) ψ1(1) · · · ψN−1(1)

. . . . . . ⎤ . (1.8) ψ0(N − 1) ψ1(N − 1) · · · ψN−1(N − 1) These matrices depend⎣on the type of the transformation used

for⎦a particular signal. ⎢ ⎥ 1.1.1 Discrete Fourier transform (DFT) The most frequently used transformation domain in the

�eld of signal processing is the discrete Fourier transform, named after the mathematician Joseph Fourier (1768–

1830). The basis functions are harmonic signals, allowing analysis of signals in the corresponding spectral domain. The

DFT form, for

a discrete-time signal x(n), is given by Its inverse is N−1 N−1 X(k) = x(n) φk (n) =

x (n)

e−j2πnk

/N. ∑n= 0 ∑n= 0 N− 1 N−1 (1. 9) x (n) = 1 X (k) ψn(k) = 1 N

∑k=0 N X(k)ej2πnk/N. ∑k=0 (1.10) Note that the relation between the

DFT and the inverse DFT coe�cients is given by ψn (k) = φ∗k (n)/N

or Ψ = ΦH/N. The two-dimensional extension of the DFT is de�ned

by N −1 M −1 X (k, l) = x(n, m )e−j2πnk/N e−j2πml/M ∑n=0

m∑=0 with the corresponding inverse transform x(n,m) = N1 M1 N−1M−1X(k,l)ej2πnk/Nej2πml/M. ∑k=0∑l=0 (1.11)

(1.12) The transformation coe�cients e−j2πnk/N e−j2πml/M are four-dimensional, since they depend on four indices (n,

m, k, l). In order to use the standard derivations and opti- mization algorithms, as well as for notation simpli�cation, the

two-dimensional signals and transformation matrices are commonly rearranged into column matrices by layering its

columns after each other in a way that x(n +

N (m − 1)) = x(n, m), (1. 13) X (k + M (l − 1)) = X (k, l), (1.

14) where n = 0, 1, . . . , N
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−1, m = 0, 1, . . . , M −1, k = 0, 1, . . . , N −1, and l = 0, 1, . . . , M − 1. Then,

the

four-dimensional transformation forms of coe�cients are rewritten as large two-dimensional matrices. 1.1.2 Time-

varying signals The signals whose spectral content change happens through time, are considered as time-varying or

non-stationary signals [5–7]. Audio signals or signals transmitted through a dispersive channel are representative

examples of time-varying signals. For their analysis, more complex transforms than the standard DFT must be used.

These transforms should adapt for signal changes in both time and frequency domain, simul- taneously. Consider a

time-varying signal x(n) with C components, C x(n) = xc(n), (1.15) ∑c=1 where xc(n), c = 1, 2, . . . , C, are the non-

stationary signals. Commonly, time-varying signals are localized in time by using a window function de�ned by w(nw).

The basic linear time-frequency representation is a direct extension of the DFT of a windowed signal, and it is referred to

as the short-time Fourier transform (STFT). It is calculated as the standard DFT applied to the windowed signal around

the instant n. That is, the signal x(n + nw) at n (and around it) is multiplied by a window w(nw). Its DFT is then found as

Nw /2−1 SSTFT (n, k) = DFT{x(n + nw)w(nw)} = x(n + nw)w(nw)e−j2πnwk/Nw (1.16) nw=∑−Nw/2 positioned at an

instant n, a frequency k, windowed by w(nw) of length Nw. The window function can be a rectangular, Hamming,

Hanning, or any other window introduced in the literature [8]. The indices nw that vary from −Nw/2 to Nw/2 − 1 will be

used. Similar results would be obtained when the index values vary from 0 to Nw − 1 (due to the DFT periodicity). If the

STFT, for a given instant n, is arranged into a vector form, the coe�cients can be denoted by SSTFT(n). 1.1. Signal

representation The STFT represents a simple and robust tool for time-varying signal analysis. As mentioned, the main

difference from the standard DFT is in introducing the time localization window. If this window is narrow, then more

localized properties in the time domain, around the considered instant n, are obtained. However, narrow windows have

poor frequency resolution, meaning that a compromise should be made. Many efforts have be done in literature to �nd

the optimal window width for a given signal which would produce a good localization in the time domain, with a

su�ciently high frequency resolution. For more complex signals, with fast changes of the spectral content, a suitable

window can be found using, for example, the approach presented in [9]. In order to elevate the resolution problem more

sophisticated quadratic representations are introduced in time-frequency analysis. The goal of those representations is

to track spectral changes more accurately, preferably without using a localization window. The most prominent

representation of quadratic time-frequency representations is the Wigner distribution whose discrete-time form is

calculated as

N/2 S(n, k) = 2 x (n + nw )x∗(n − nw )e− j4πnwk /N.

(1.17) nw ∑=−N/2 It can track linear changes in the frequency of signal components without any window. In order to

limit the computation interval, a window is introduced in this distribution as well. This distribution is then de�ned as the

pseudo Wigner distribution (PWD) of the form N/2 SPWD(n,k) = 2 w(nw/2)w(−nw/2)x(n + nw)x∗(n − nw)e−j4πnwk/N.

(1.18) nw ∑=−N/2 Although a window is present (as in the case of STFT), its only purpose in PWD is to limit the

calculation interval. This means that the window is not crucial for the spectral localization of the presentation. For such
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reasons, the PWD is used for signals with fast spectral variations. However, the PWD is a quadratic distribution since it

is calculated as the DFT of the product x(n + nw/2)x∗(n − nw/2). For a multicomponent signal, we will have the product

of different components xc(n + nw/2)x∗s(n − nw/2) for c ≠ s. The DFT of these products will appear in the time-

frequency representation as new components (cross-terms) and can sometimes overlap with desirable auto-terms. A

simple way to keep the good properties of the PWD, while avoiding or reducing cross-terms can be achieved by using

the S-method (SM) LSM SSM (n, k) = SST

F T (n, k + p) SS∗T F T (n, k − p) (1.19) p=∑− LSM where 2LSM + 1 is the width

of

the window in the spectral domain. Two of the most widely used representations (STFT and PWD) can be obtained from

the S-method as its special cases [9]. That is, when LSM = 0, the squared modulus of the standard STFT (i.e.

spectrogram), is Sspectrogram(n,k) = |SSTFT(n,k)|2, (1.20) while for 2LSM + 1 = Nw the standard PWD is obtained. The

optimal representation is obtained by adding the terms for p = 0, ±1, ±2, . . . which improve the representa- tion from the

STFT toward the PWD, until the cross-terms start to appear [9]. This effect can be detected by using measures of

concentration of time-frequency represen- tations. One such measure was based on norm-one and was introduced for

measuring and optimizing time-frequency representation �nding the minimum of N−1 ||SSTFT(n,k)||1 = |SSTFT(n,k)|

∑k=0 with respect to the window length. In this case minNw,LSM ||SSM (n, k)||1 (1.21) (1.22) produces optimal

representation. It is interesting to note that this kind of minimization is used in compressive sensing for sparse signal

reconstruction [10–13]. This will be reviewed in the next section. 1.2 Compressive sensing and sparse signal processing

Many signals in the nature exhibit sparsity property in a transformation domain. This fact brought the idea of developing

the compressive sensing technique, which was in- troduced in data processing as such by Donoho, Candes, and

Baraniuk [14–18]. A signal wtih small number of nonzero component, in comparison to the total length of the signal, in a

transformation domain is described as sparse. It is de�ned by De�nition 1.1. De�nition 1.1 A signal x(n) of length N

is K-sparse in a transformation domain if it consists of K nonzero components in

the corresponding domain, K ≪ N, at positions K ∈ {k1,k2,...,kK}, and zero-valued components everywhere else, X(k) =

A0,k ≠ 0, footrhekrw∈isKe (1.23) where Ak are the amplitudes of the components at positions k ∈ K. { 1.2.1

Measurements of sparse signals Unlike the traditional sampling theorem, one of the main advantages of sparse sig- nal

processing is that such

signals can be recovered using a reduced number of NA observations. The

measurements are de�ned in

De�nition 1.2. 1.2. Compressive sensing and sparse signal processing De�nition 1.2 A measurement of sparse

coe�cients X
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(k), k = 0,1,...,N − 1, is obtained as their linear combination N−1

y(i) = ak(i)X(k), (1.24) where ak(i), k = 0, 1, . . . , N −1, are the weighting coe�cients for the i-th measurement, ∑k=0 i = 0,

1, . . . , NA − 1. The aim of recovering sparse signals with

a reduced set of samples /measurements/observations had a wide range of interest

in the

recent literature [19–23]. The theory stating this fact is known as compressive sensing (CS), developed under the

framework of sparse signal processing (SSP). Notice that we can relate the general form of measurements, de�ned by

(1.24), with signal samples de�ned by (1.10). Comparing these two relations, we can state that a signal sample, at one

instant ni, can be seen as the measurement of X(k) with N−1 y(i) = x(ni) = e−j2πnik/NX(k), (1.25) ∑k=0 where the

weighting coe�cients are the DFT transform coe�cients, i.e. ak(i) = e−j2πnik/N. (1.26) A reduced set of measurements,

within this context, can be considered as the re- duced number of signal samples. The difference between the sampling

by the traditional sampling theorem and by compressive sensing is shown in Fig. 1.1, where only NA = 32 samples are

used for the analysis, instead of the full set of measurements N = 128. The main objective of CS and SSP is to desirably

reduce the number of acquisi- tion samples/observations/measurements used for the signal sensing, transmission, and

storying. Besides that, the small number of available measurements or signal samples can be the consequence of other

physical restrictions in the considered system. It could also be a result of unavailable samples due to high corruption of

some signal samples or parts of the signal. All of these scenarios will be considered in the thesis, since the formal

mathematical framework is similar. 1.2.2 Measurement matrix The measurement matrix consists of the coe�cients

used to form measurements of a sparse signal with elements X(k). In the case that the signal samples are used as the

measurements, the measurement matrix is de�ned based on the transformation matrix for the considered domain of

the signal sparsity. The NA available samples y(i) at the positions de�ned by the set NA = {n1, n2, . . . , nNA}, 2 0 -2 0 20

40 60 80 100 120 2 0 -2 0 20 40 60 80 100 120 Figure 1.1: The difference betweeen traditoinal sampling theorem and

compressive sensing: traditional Shannon-Nyquist sampling (top); compressive sensing sampling (bottom). can be

written as

y = [y(0), y( 1), . . . , y(NA − 1)]T = [x( n0), x( n1), . . . , x( nNA −1)]T . (1.27) The

measurements, which are the linear combinations of the inverse transform coe�- cients, are presented in a matrix form

as y = AX, (1.28) where A is a measurement matrix

of size NA × N obtained by keeping the rows of the inverse transformation matrix Ψ,

which correspond to the
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instants ni, i = 0, 1, . . . , NA− 1, of the available samples/measurements ψ0(n0) ψ1(n0) · · · ψN−1(n0) A = ⎡ ψ0(n1) ψ1(n1)

· · · . . . . . ψN−1(n1) . ⎤ . (1.29) ⎢ ψ0(nNA−1) ψ1(nNA−1) · · · ψN−1(nNA−1) ⎥ Using the notation ak(i) = ψk(ni) we can write

a more general form of the measurement ⎣ ⎦ matrix as

a0(0) a1(0) · · · aN−1(0) A = ⎡ a0(1) a1(1) · · · aN−1(1) . . . . . . ⎤ . (1.30) ⎢a0( NA − 1) a1(

NA − 1) · · · aN −1(

NA − 1) ⎣ ⎥ Depending on the particular application, several measurement matrices other than ⎦ the partial DFT, are

frequently used in compressive sensing. An example of a widely 1.2. Compressive sensing and sparse signal

processing used measurement matrix is the Gaussian measurement matrix, where the weighting coe�cients are the

Gaussian distributed random numbers ak(i) ∼ N(0,1/NA), (1.31) with zero mean and variance 1/NA. The weighting

coe�cients can also be uniformly dis- tributed random numbers, or random numbers assuming values +1 or −1 (i.e.

Bernoulli measurement matrix). Note that randomness is a desirable property of the measurement matrices. Consid-

ering the DFT, the randomness can be increased by sampling the signal at an arbitrary instant ti instead of the regularly

de�ned Nyquist samples at i∆t. This case will be also examined. 1.2.3 Problem formulation In the mathematical sense,

the objective of the CS based approach is to reconstruct the N unknown elements of a sparse signal using only the NA <

N available samples y. Reduction in the number of available measurements will result in a system of NA equations,

whose matrix form is AX = y. Since there are N > NA unknown variables in X, the system is under-determined and cannot

be solved uniquely, without additional constraints. The primary and most crucial constraint in CS is that the signal is

sparse. If this constraint is satis�ed, the solution is obtained by minimizing the sparsity of the signal X, given the

measurement equations. Firstly, in order to minimize the sparsity, the sparsity measure must be de�ned. The most

straightforward sparsity measure is the L0-norm, which counts the nonzero values in the transformation domain. The

L0-norm of X with K nonzero elements is ǁXǁ0 = K. (1.32) The problem formulation, using the L0-norm,

is then min ǁXǁ0 subject to y = AX. (1.33) This is a direct and basic way to

minimize sparsity. However, it is an NP-hard (NP – non-deterministic polynomial-time) combinatorial problem. Also, it is

sensitive to noise and not feasible for computational purposes, having NK possible combinations for a viable solution.

This is why more practical cases, such as the closest convex cost function, the L1-norm, are used ( ) min ǁXǁ1 subject to

y = AX. (1.34) In theory, it has been proved that the minimization of the L1-norm will have the same solution as the

minimization of the L0-norm following particular conditions [24]. The L1-norm minimization allows the application of

linear programming methods for convex function minimization. 1.3 Problem solutions The CS theory has produced a

vast number of methods to �nd the unique solution to the previously stated problem. These can be divided into three

broad groups of algorithms minimizing the signal sparsity: • L0-based reconstruction algorithms, solving Eq. (1.33),
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such as – Orthogonal matching pursuit (OMP) [25–27], – Compressive sampling matching

pursuit (CoSaMP)

[28], • L1-based reconstruction algorithms, solving Eq. (1.34), such as – LASSO minimization [29–32], – Gradient-based

reconstruction [33, 34] – Total variations [35–37], – Iterative hard thresholding (IHT) [38–40]. • Bayesian-based

reconstruction [41, 42]. The summary of some of these algorithms can be found in Appendix 1. In the next subsection,

the OMP and its iterative extension will be further detailed. 1.3.1 Reconstruction algorithm In all reconstruction

methods, the initial estimate plays a crucial role. It is not only a starting point for all of them, but contains information

about the solution existence as well. The initial estimation gives a good insight of the reconstruction performance which

could be expected. Initial estimate The available samples (measurements) are used to estimate the initial values of the

sparse coe�cients X(k), k = 0,1,2,...,N. The values of the initial estimate will be denoted by X0(k), k = 0,1,2,...,N, or in a

vector form as X0. The initial estimate can be considered as a back-projection of the measurements to the matrix A, X0

= AHy. (1.35) The elements of this initial estimate can be written as NA−1 X0(k) = ak(i)y(i). (1.36) ∑i=0 From Eq. (1.35),

using y = AX, the relation between the initial estimate with the true coe�cients (the actual solution of our problem) is X0

= AH AX. (1.37) 1.3. Problem solutions Note that if AH A is an identity matrix, i.e., AH A = I, then the initial estimate

would be equal to the correct coe�cients X, resulting in the solution of our problem. However, this is impossible to

achieve when a reduced set of measurements is available (when the measurement matrix is of size NA × N ). The off-

diagonal elements in the matrix AH A cannot be zero. The maximal value of these elements, denoted by µ (discussed

later in Section 1.3.2.), satis�es the Welch upper bound [43, 44], meaning that µ≥ N − NA √NA(N − 1) . (1.38) From this

inequality, we see that the maximal off-diagonal element must be greater than zero when NA < N. Only if all signal

samples are available (when NA = N), then it is possible to get the bound equal to zero and AHA = I. This is an expected

result when the reconstruction process reduces to the inverse signal transform. Then, the measurements would be

equal to the full set of signal samples y = x. Since the properties of the initial estimate will be crucial throughout this

thesis, its form for a sparse signal will be presented in detail. The measurements in (1.24) for a sparse signal with

nonzero coe�cients X(k) at k ∈ {k1,k2,...,kK} =

K, can be written as K y(i) = akl (i)X(

kl), (1.39) ∑l=1 The initial estimate elements from (1.36) is of the form NA −1 NA −1 K X0(k) = ak(i)y(i) = ak(i) akl (i)X (kl

) ∑i=0 or, by changing the order of summation, ∑i=0 ( ∑l=1 ) K NA−1 K where X0(k)= X(kl) ∑l=1 ( ∑i=0 ak(i)akl(i) =

X(kl)µ(k,kl), ) ∑l=1 NA−1 (1.40) (1.41) µ(k , kl ) = ak (i)akl (i). (1.42) ∑i=0 This relations will be used for the analysis of the

reconstruction accuracy. Note that the value of µ(k, kl) is equal to the element of matrix AHA at the position (k, kl). OMP

reconstruction algorithm For most of the presented results, an iterative variant of the OMP reconstruction algorithm

[19,28], will be used. This algorithm belongs to the group of implicit zero- norm minimization solutions, since it is based

on counting and minimizing the number of nonzero elements in X(k). Most of the results presented in the thesis are

valid for other CS algorithms as far the conditions for unique reconstruction are satis�ed. The reconstruction algorithm

is implemented in two main steps: 1. estimation of the set of positions K of the nonzero components in X, and 2.
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reconstruction of the element X(k) values using the measurements/available sam- ples with the estimated nonzero

positions. In order to �nd the positions of nonzero elements, the initial estimate from (1.35) is calculated and used. Two

of the methods are considered, an one-step reconstruction and the iterative version of this algorithm. Note that, the

hardware realization of the algorithm in the Field Programmable Gate Arrays (FPGA) circuit is shown in [45]. More

architectures for CS methods can be used, as presented in [46, 47]. One-step OMP The simplest case is when we can

expect that the number nonzero coe�cients of the initial estimate X0(k) at k ∈ K are notably greater in comparison to all

other elements at k ∈/ K. In this case, matrix AHA should be such that X0 contains K coe�cient much higher than the

other coe�cients. The position detection of the nonzero component is done by �nding the positions of the K largest

components in X0, that is K = {k1,k2,...kK} = arg{max|X0|}. (1.43) Taking the positions of theK largest components

forming the set K in (1.35) the am- plitude reconstruction is performed. As it has been stated before, if AHA

were an identity matrix, X0 would be identical to the exact solution X. However, with a re-

duced set of

samples, the Welch lower bound prevents this. Nevertheless, it is important to achieve that the diagonal elements of

AHA are more signi�cant regarding the other non-diagonal elements. For the second part of the algorithm, let consider

that all K positions are found correctly. Then, the values in X(k) at k ∈/ {k1, k2, . . . , kK} are set to zero, and the vector

XK = [X(k1), X(k2), . . . , X(kK)]T is with unknown nonzero

values that should be found (reconstructed). Note that this assumption transforms the initial under- determined system

y = AX with NA equations and N unknowns in X to an over- determined system of NA equations with K unknowns (X(k1),

X(k2), . . . , X(kK)). The new set of equations now reads y = AK XK . (1.44) This system can be solved for the nonzero

spectral values XK at the estimated positions K. The matrix AK is an NA × K sub-matrix of A, keeping only the columns

of the nonzero elements positions in X(k) ak1 (0) ak2 (0) · · · akK (0) AK = ⎡ ak1 (1) ak2 (1) · · · . . . . . akK (1) . ⎤. (1.45)

⎢ak1 (NA − 1) ak2 (NA − 1) · · · akK (NA − 1) ⎣ ⎦ ⎥ 1.3. Problem solutions The smallest number of measurements needed

to recover K coe�cients at the known positions is NA = K < N. However, for an accurate estimation of the nonzero posi-

tions, a much larger number of measurements is needed according to the reconstruction conditions (which will be

discussed in the next section). When NA >

K, the system is over-determined, and the solution is found in the mean squared error (MSE)

sense. The solution is

XK = (AHKAK)−1AHKy = pinv(AK)y, (1.46) where pinv(AK) = (AHKAK)−1AHK is a matrix AK pseudo-inverse and AHKAK is

called a K × K Gram matrix of AK. Iterative OMP The OMP procedure considers the criteria when the K components are

larger than the initial value coe�cients at originally zero-coe�cient positions. That condition can be relaxed by using the

iterative version of the method. In order to estimate the position of the largest nonzero component, only
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its value must be larger than the values at the originally zero-valued coe�cient positions.

The position of the largest component is found

as k1 = arg max{X0}. (1.47) Its amplitude value is estimated using Eq. (1.46) as it were the only nonzero coe�cient. It is

reconstructd using the sub-matrix A1. Then, this component is

subtracted from the measurements, i.e., y− A1X1, and the procedure is continued by

estimating the

next largest coe�cients with the new measurements. After the initial estimate is calculated with these samples, its

largest value position is found as k2, and the new set of two nonzero positions is formed as {k1, k2}. Matrix A2 is

formed with these two positions and (1.46) is solved for X2. After the two largest coe�cients are detected and

estimated, they are removed from the measurements as y − A2X2. If these new measurements are equal to zero after

the subtraction, it means that we have solved the problem and that signal is K = 2 sparse. If this not the case, the new

measurements (removing the two largest coe�cients) are used for the next initial estimate and the third largest

coe�cient position detection. The procedure is iteratively continued until some desired stopping criterion is achieved.

The simplest measure for it can be that the new measurement matrix, after K steps, calculated as y − AKXK, is equal to

zero or its energy is bellow a de�ned small accuracy level. 1.3.2 Conditions for reconstruction Having the condition of

sparsity ful�lled, additional criteria should be satis�ed for a successful and unique reconstruction with a reduced

number of samples. These criteria are intensively studied and they are commonly expressed using the coherence index

of a measurement matrix or the restricted isometry property (RIP) of this matrix. Coherence index The most widely used

criterion for a successful reconstruction is based on the co- herence index of the measurement matrix A. Consider an

NA × N measurement matrix A and denote its columns by vectors ai,

i = 0, 1, . . . , N − 1, that is A = [a0, a1, . . . , aN−1]. (1.48) The

scalar product of two columns of this matrix, k and i, is de�ned by NA−1 〈aHk,ai〉 = ai(p)a∗k(p). (1.49) ∑p=0 Notice that

this product is, by de�nition, equal to the (k,i) element of matrix AHA. De�nition 1.3 The

coherence index of a measurement matrix is de�ned as the maximal value of the normalized

scalar product

µ = max |µ(i, k)| = max 〈aHk, ai〉 Np=A0−1 ai(p)a∗k(p) 〈akH, ak〉 = max ∑ Np=A0−1 |ai(p)|2 , (1.50) for i ≠ k. For the

normalized measur∣ement ma∣trices ∣ Np=A∑0−1 |ai(p)|2 = 1, ∣the coherence index is de�ned by ∑ NA −1 µ = max|µ(i,k)|
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= max 〈aHk,ai〉 = max ai(p)a∗k(p) . (1.51) ∣ ∣ ∣ ∑p=0 ∣ This value is an important parameter in choosing the measurement

matrix which ∣ ∣ will be further discussed by Statement 1. Statement

1: A K-sparse signal can be reconstructed from the measurements in a

unique way

if the cohrence index of the matrix A satis�es the condition K < 1 + 1

1 2 . (1.52) ( µ ) A smaller coherence index means that signal with larger sparsity values K can be reconstructed. The

relation can be derived considering the initial estimate as K X0(k) = X(kl)µ(k,kl). (1.53) ∑l=1 Without loss of generality,

assume that the largest coe�cient value is X(k1) = 1. The largest disturbance to this coe�cient estimation is if the

remaning (K−1) nonzero 1.3. Problem solutions coe�cients are almost equally strong, i.e., close to 1. Then the initial

estimate would be K X0(k) = µ(k, kl). (1.54) Since µ(k, kl) ≤ µ, the largest possible value at the original zero coe�cient

position is ∑l=1 |X0(k)| ≤ Kµ. At the largest coe�cient position, k = k1, the worst case is if all other (K − 1) terms are

maximal (equal to µ) but with opposite sign than its value, that is X0(k1)| > 1 − (K − 1)µ. The detection of the largest

element is successful if its worst case initial estimate is greater than the worst case value at zero coe�cient positions 1

− (K − 1)µ > K µ (1.55) Note that, if this relation is satis�ed for the largest coe�cient, then, after it is success- fully

detected, reconstructed and removed, the relation holds for the signal with lower (K − 1)-sparsity. Restricted isometry

property (RIP) The restricted isometry property is another way to de�ne a condition which the measurement matrix

should satisfy in order to uniquely reconstruct a signal under the CS approach. Firstly, a K sparse signal is uniquely

reconstructed if the size of the smallest non- singular sub-matrix of A (spark) is such that spark{A} > 2K. (1.56) This

condition means that all submatrices of A with order lower than 2K are nonsin- gular. Statement 2: A K-sparse signal can

be uniquely reconstructed using the measurement matrix A, if the RIP condition 1 − δ2K ≤ ǁA2K X2K2 ǁ22 ≤ 1 + δ2K ,

(1.57) ǁX2K ǁ2 holds for all its sub-matrices A2K of order 2K, where δ2K is the isometric constant in the range 0 ≤ δ2K <

1. The constant δ2K can be calculated as δ2K = max{1 − λmin, λmax − 1} (1.58)

where λmin and λmax correspond to the minimum and the maximum eigenvalue of

A2TK A2K , respectively. The

RIP condition ensures that the solution of the Eq. (1.33) and Eq. (1.34) give the identical results, meaning that the results

of the approximation are close to the the range 0 ≤ δ2K < 2 − 1. true values [24]. It is√seen that, in the case of Eq. (1.34),

the isometric constant is in Although these conditions are fundamental for obtaining a successful and unique

reconstruction of a sparse signal, it is interesting to note that they are very conserva- tive for real-world sparse signals.
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Without loss of generality, we can assume that the reconstruction conditions are met and

the

practical guidelines are satis�ed (that the number of measurements is signi�cantly higher than the sparsity). Chapter 2

Reconstruction error of non-stationary signals Contents 2.1 Initial estimate analysis for uniform sampling . . . . . . . . . . . . .

. 22 2.2 Initial estimate analysis for random sampling . . . . . . . . . . . . . . 24 2.3 Error in time-frequency signal

reconstruction . . . . . . . . . . . . . . 25 2.3.1 Additive input noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Error calculation

examples . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Sampling generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.5

Quantization error in compressive sensing . . . . . . . . . . . . . . . . 37 2.5.1 Quantization effect analysis . . . . . . . . . . . . . . . . . . .

. . . . . . . 39 2.6 Noise folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 The compressive sensing framework assumes

sparse signals. However, due to their nature, many real signals (particularly non-stationary signals) are only

approximately sparse or not sparse at all. Additionally, the sparsity condition can be distorted due to many other

reasons. The most evident one is the additional noise in signals. Moreover, a very simple, yet an immense real-world

problem, is the analysis of signals which are not on the sparsity domain grid. This includes signals which are not on grid

frequencies. These signals can be analyzed and processed within the compressive sensing framework assuming that

they are sparse under natural circumstances. The in�uence of their nonsparsity will result in the error through the

reconstruction. For such signals, only the limit bounds of the reconstruction error were derived in the literature

[15,24,48–50]. The main contribution of this Chapter is the calculation of the precise expected squared reconstruction

error in time-varying signals. The STFT is assumed as the sparsity domain of the analysis. The reconstruction of

nonsparse signals constrained with a sparsity coindition will be examined and compared to the statistical error

calculation. In the �rst part of the Chapter, the properties of the initial estimate in the recon- struction procedure will be

explained as the basis to the error derivation. The noise in the initial estimate will be calculated on uniformly and

randomly sampled signals. These results will support the error calculation in the STFT domain. The result will be

generalized for cases when the signal is nonuniformly sampled [51] as a consequence of sampling jitter or intentional

sampling deviations. Since most of the real systems 21 Chapter 2. Reconstruction error of non-stationary signals are

implemented in hardware using �nite length registers, a speci�c form of noise, the quantization noise, is also present in

signals [52], and it will be also analyzed in this Chapter. At the end, the effect of noise folding will be considered, which

will conclude the effectiveness of the error calculation in many real circumstances of signals nature. 2.1 Initial estimate

analysis for uniform sampling The initial estimate X0 from Eq. (1.35) is the key for deriving the exact error of an

approximately sparse or nonsparse signal. It can be understood as the back-projection of the samples on the

measurement matrix, which is de�ned as the matched �ltering. It is the �rst important step for the analysis and

reconstruction of a signal. The available data are back-projected to the measurement matrix and used in all

reconstruction algorithms. Moreover, the back-projection relation contains more properties of the desired sparse signal

than being used just as its initial estimate. In Section 1.3.3. it was shown that the key criteria for the signal

reconstruction can be related to the back-projection relation and initial estimate (e.g. the coherence index). The initial

estimate

can be rewritten as X0 (k) = x( ni)φni (k). (2.1) n∑
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i∈NA If all measurements are available, the initial estimate of an originally sparse signal X(k) will be sparse and equal to

the original signal transform. However, if the set of available measurements is reduced, the missing samples will

produce noise in the initial estimate and cause its deviation from the original transform. Having less available samples

will make the signal in the transformation domain more noisy, as illustrated in Fig. 2.1. For an easier understanding, let

us consider the STFT calculated at one instant using a rectangular window. The analysis of the transform then reduces

to the DFT analysis of the signal samples within the window. For the DFT case, the Eq. (2.1) reads X0(k) =

x(ni)e−j2πnik/N . (2.2) n∑i∈NA Firstly, let assume a simple single-component signal, i.e. K = 1, with amplitude A0 at a

position k0, X0(k) = A0ej 2Nπ (k−k0)n. (2.3) n∑∈NA The expected value of X0(k), i.e., E X0(k) , denoted by µX0(k) is equal

to µX0(k) = A{0 }E ej 2Nπ (k−k0)n . n∑∈NA { } In [8, 53], it has be shown that the expected value is E ej 2Nπ (k−k0)n = δ(k

− k0), { } (2.4) (2.5) 2.1. Initial estimate analysis for uniform sampling 0 2 1 40 60 80 -1 20 -2 0 0 2 1 40 60 0 50 100 80 0

-1 20 -2 0 2 0 50 100 80 0 1 60 0 40 -1 20 -2 0 0 50 100 0 50 100 50 100 50 100 Figure 2.1: Initial estimate noise

illustration: time domain (left); frequency domain (right). Top - signal with full set of measurements. Middle - signal with

50% of available samples with corresponding DFT. Bottom - signal with 25% of available measurements with

corresponding spectrum. Red dots represent true values, black lines present available values. where δ(k − k0) = 1 for k =

k0, and δ(k − k0) = 0 for k ≠ k0. Since there are NA terms in (2.4), we get µX0(k) = A0NAδ(k − k0). (2.6) For the

calculation of variance, the value at the position of the component, i.e. k = k0, is σX20(k) = 0. For the case when k ≠ k0,

the variance of the initial estimate will be nonzero, while the mean value is zero. The variance is calculated using

σX20(k) = |A0|2E ej 2Nπ (k−k0)(n−m) . (2.7) n∑∈NA m∑∈NA { } variables ej 2Nπ (k−k0)n are equally distributed,

producing expectation equal to It has been previously con�rmed in [53] that, for random n ≠ m and k ≠ k0, E ej 2Nπ

(k−k0)(n−m) = − 1 N − 1 . (2.8) For n = m, the complex sinusoid is deterministic, and the relation E ej 2Nπ (k−k0)(n−m) { }

= 1 holds. Note that, in (2.7), there are NA terms when n = m, and NA(NA − 1) terms when { } n ≠ m. Therefore, for k ≠ k0,

the DFT coe�cient variance becomes σX20(k) = |A0|2 NNA−NQ1 . (2.9) In the general case, i.e. when K > 1, the initial

estimate is a summation of independent random variables K X0(k) = Alej 2Nπ (k−kl)n. n∑∈NA ∑l=1 According to (2.6),

the mean value of a K > 1 sparse signal is then K µX0(k) = NA Alδ(k − kl). ∑l=1 (2.10) (2.11) Since the random value at k

= kl,l = p, does not contribute to the noise, the variance of X(k) will be σX20(k) = NA|Al|2 NNA−NQ1 . K (2.12) ∑ll=≠1p

This analysis can be applied on sparse time-varying signals in the joint time- frequency domain. The total variance of a

STFT signal will be the average sum of the variances of each windowed instant of DFT. 2.2 Initial estimate analysis for

random sampling In some practical scenarios, signals are randomly sampled due to intentional strategy to increase

randomness in sampling or due to the effect of high jitter in sampling. The jitter can be caused by lack of

synchronisation, hardware or transmission problems. Random sampling affects the processing of signals under the CS

framework, since the sample values are not on the grid anymore, i.e., at random positions 0 < tn < N. Then, the initial

estimate of a signal with available samples at random positions tn ∈ NA = {t1,t2,...,tNA} is X0(k) = x(tn)e−j2πtnk/N .

(2.13) n∑∈NA 2.3. Error in time-frequency signal reconstruction The mean value of such signal remains the same as for

the uniform sampling case, i.e. the mean value is equal to the one from Eq. (2.11). In the case of random sampling, it is

interesting to notice that, unlike when the signal is uniformly sampled on the grid, the variance at the signal component

of a signal will not be zero even when N signal samples are available. This will conclude that the all components in the

initial estimate X0(k) are affected by a noise. The noise has a variance K σX20(k) = NAA2l[1 − δ(k − kl)]. (2.14) ∑l=1 2.3

Error in time-frequency signal reconstruction Intuitively, it can be seen that this idea is closely related to �nding the exact
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error of the reconstruction of approximately sparse or nonsparse signals when they are re- constructed under the

assumption that their nature is originally sparse. For a signal x(n), with the corresponding transformation X(k), k = 0, 1, . .

. , N − 1, the de�nitions of approximately sparse and nonsparse signals are given next. De�nition 2.1 An approximately

sparse signal, of length N, is a signal which consists of K sig- ni�cant non-zero components at k ∈ K = {k1,k2,...,kK} and

N − K small non-zero components k ∈/ K , i.e. min |X(k1)|,X(k2)|,...,|X(kK)| ≫ max

|X(kK+1)|,|X(kK+2)|,...|X(kK+ N)| { } { (2.} 15) De�nition 2.

2 A nonsparse signal, of length N , is a signal which consists of N non-zero components of the same order of amplitude.

Since the signal is considered as originally sparse in its nature, the reconstruction is performed under the constraint that

it is K-sparse. This results that the remaining N− K components, that are not reconstructed, will impact on the error of

the reconstructed components. An analysis of the error in the reconstructed signal caused by this effect will be

analyzed. For the analysis, recall a time-varying x(n), with a STFT of SN(n), and its win- dowed version x(n,nw) of length

Nw, as Nw /2−1 SN (n, k) = DFT{x(n + nw)w(nw)} = x(n + nw)w(nw)e−j2πnwk/Nw . (2.16) nw=∑−Nw/2 Assuming sparsity

K, the signal is reconstructed using the available measurements at positions n + nw ∈ NA. Consequently, the number of

missing measurements is NQ = N − NA. Notice that using any CS reconstruction method (assuming that conditions for

a successful and unique reconstruction are met), we detect and reconstruct K coe�cients, with Al(n) corresponding to

the reconstructed amplitudes at k ∈ K. The amplitudes of the nonreconstructed components generate noise in the

reconstructed coe�cients SR(n). The noise variance caused by the components that are not reconstructed is obtained

from the variance of the initial estimate, given by Eq. (2.14) as |Al(n)|2 NANQ N − 1 . (2.17) The amplitude values at the

positions of the original nonzero coe�cient in the initial estimate SN0(n) are proportional to NA. In the reconstruction

process, the amplitudes should be reconstructed to their true values (i.e., when the full measurement set is available).

Thus, the values of the recovered amplitudes should be proportional to N, instead of NA. resulting in the scaling factor

to be N/NA. Therefore, the noise variance scaling factor

in the reconstructed coe�cients is (N/NA)2. Hence, the noise variance

caused by one nonreconstructed component to the reconstructed coe�cient will be |Al(n)|2 NNA22 NNA−NQ1 ∼=

|Al(n)|2 N NQ . (2.18) NA The noise energy in the K components of SR(n) is the summation of the K variances of each

reconstructed coe�cient. The total energy of noise in the reconstructed coe�cients generated by the N − K

nonreconstructed components is ǁSNR(n)−SNK(n)ǁ22 = KN NNQA N |Al(n)|2 , (2.19) l=∑K+1 where SNR(n) is obtained

from SR(n) by adding zero values at the pisitions k ∈/ K. The energy of the nonreconstructed elements in the STFT

can be written as N ǁSN (n)− SN K (n)ǁ 22 = |N Al (n)|2

, (2.20) l=∑K+1 where SNK(n) is a signal of length N, which represents the amplitudes of SN(n) at positions K, and is

zero-valued everywhere else. From (2.19) and (2.20), it can be concluded that the
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energy of error in the reconstructed components is proportional to the energy of the

nonreconstructed components

of the nonsparse signal in the form ǁSNR(n)−SNK(n)ǁ22 = KNNAQN ǁSN (n)−SN K (n)ǁ22 . (2.21) Note that, in the case

when a randomly sampled signal is considered, the error is ǁSNR(tn)−SNK(tn)ǁ22 = NA ǁSN(tn)−SNK(tn)ǁ22 . K (2.22) If

the signal is strictly sparse, we can conclude there is no reconstruction error, i.e. ǁSNR(tn)−SNK(tn)ǁ22 = 0, (2.23)

meaning that SN(tn) = SNK(tn), whether the signal is sampled uniformly or randomly. For uniformly sampled signal, the

reconstruction error is zero-valued when all sam- ples are available, i.e. NA = N and NQ = 0. 2.3.1 Additive input noise In

a more realistic case, the received measurements are usually with some additive noise y + ε = AX, (2.24) where ε is the

additive noise with variance σε2. Having noisy measurements will provide that the initial estimate of the signal, SN0(tn,

k), is with an additional noise component as well. The variance in SN0(tn, k),

caused by the measurements input noise, is σS2N0(tn ,k) = NAσε2. (2. 25) In the

reconstruction process, as mentioned, the initial estimate is scaled by the factor N/NA. The noise variance in one

reconstructed component is then var{SNR(tn, k)} = NAσε2 NA NNA2 σε2. N 2 = (2.26) That will result in the total MSE in

K reconstructed coe�cients, due to to the additive ( ) noise ǁSNR(tn) − SNK(tn)ǁ22 = K NNA2 σε2. (2.27) The error

energies, caused by the nonsparsity effects and the additive input noise independently, can be summed to produce a

general relation for the expected squared error including both effects. The equation for the noisy and nonsparse signals

case is given by [54] ǁSNR(tn)−SNK(tn)ǁ22 = KCK ǁSN(tn)−SNK(tn)ǁ22 + K NNA2σ2ε, (2.28) with CK = NQ/NAN for

uniform sampling (tn = n∆t) and CK = 1/NA for random sampling. The accuracy of the theoretic result in Eq. (2.28) will

be validated on different sig- nals. The result for the error calculation will be compared with a statistically calculated

error, Estatistical = 10 log(||SNK(tn) − SNR(tn)||22) (2.29) where SNK(tn) is the original K-sparse signal at positions k ∈ K

and SNR(tn) is the reconstructed signal at k ∈ K. 2.3.2 Error calculation examples Example 1: Uniform sampling. Let

assume a signal consisting of two main com- ponents which are linear frequency modulated (LFM) x(t) = 1.3e jπ 52 Nt

+32( Nt )2+2πφ1 jπ 4 Nt −20( Nt )2+2πφ2 ( ) + 2.1e ( ) , (2.30) with N = 1024. The values φ1 and φ2 are the random

phases in the signal. The cases of uniform and random sampling are considered. The signal is sampled with sampling

interval ∆t = 1. The STFT of the signal with full set of measurements at t = n∆t and with Hamming window of length Nw

= 256 is presented in Fig 2.2 (top left). A reduced number of available measurements/samples is considered next. The

available samples are affected by a random Gaussian noise with zero-mean and variance σε = 0.1. The STFT with the

set of available samples of size NA = 2N/3 is presented in Fig. 2.2 (top right). From the Figures it is seen that the signal

is non-stationary, thus it is not strictly sparse. The reconstruction with sparsity level of K = 8, 16, 32, 48 is presented in

the remaining subplots of Fig. 2.2, respectively. It is interesting to note that, by using only K = 8 the weakest component

is not reconstructed. When K = 16, only few parts of the component are reconstructed. Only by using K = 32 or more we

can get the recovery of all three components. Using the calculation from Eq. (2.28), the theoretical error is calculated as

Etheoretical = 10 log K N Q (2.31) ( NA N ǁSN (n)−SN K (n)ǁ22 + K NNA2 σε2 . ) The total reconstruction error assuming

different number of available measurements NA and various sparsities K is illustrated in Fig. 2.3. The results are
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averaged in 100 realizations. The statistical error is presented with the dots, while the theoretical error is shown with

lines. The �lled dots present that the reconstruction is performed successfully with high probability. In this case, the

condition to consider a successful reconstruction is when NA > 4K. Example 2: Random sampling. Assume a LFM signal

with three main com- ponents x(t) = x1(t) + x2(t) + x3(t) (2.32) where x1(t) = 0.7e jπ 52 Nt +32( Nt )2+2πφ1 ( ) x2(t) =

1.3e jπ 113Nt+46(Nt)2+2πφ2 ( ) x3(t) = e jπ 446Nt−54(Nt)2+2πφ3 ( ) (2.33) (2.34) (2.35) 250 200 150 100 50 5 10 15 20

25 30 250 200 150 100 50 5 10 15 20 25 30 250 200 150 100 50 5 10 15 20 25 30 250 200 150 100 50 5 10 15 20 25 30

250 200 150 100 50 5 10 15 20 25 30 250 200 150 100 50 5 10 15 20 25 30 Figure 2.2: Sparse STFT reconstruction

when signal is uniformly sampled: STFT with the full set of measurements (top left); STFT with the reduced set of noisy

measurements with variance σε = 0.1 (top right), the reconstruction with K = 8, 16, 32, 48 (remaining subplots). with N =

1024 and random phases φ1, φ2, and φ3. In this case, a random set of NA available samples at 0 ≤ tn ≤ 1024 is

considered. The STFT, when the full set of measurements is considered, is shown in 2.4 (top left). It can be observed

that random sampling of the signal adds to the nonsparsity of the signal, together with the reduced number of available

samples, Fig. 2.4 (top right). The signal is reconstructed with assumed sparsity levels of K = 16, 24, 32, 48. 10 5 0 -5 -10

-15 -20 0 50 100 150 200 250 Figure 2.3: Total averaged reconstruction error asuming different number of available

mea- surements NA and various sparsity levels K. The error is averaged over 300 realizations. The signal is uniformly

sampled. Lines present the theoretical results, while the dots are the sta- tistical values. The �lled dots show when the

recovery is performed with a high probability, i.e. for NA > 4K. Using the calculation from Eq. (2.28), the theoretical error

is Etheoretical = 10 log ( NA + 1) ǁSN (n)−SN K (n)ǁ22 + K NNA2 σε2 . K (2.36) ( ) The total reconstruction error when NA

= N/2, 2N/3, 3N/4 is presented in Table 2.1. The total error is averaged in 100 realizations. The statistical results are

presented with dots, and the theoretical error is presented with the lines. The �lled dots present the results when the

reconstruction success is of high probability. Note that the error in the random sampling case is larger than the one

received in the uniform case. It is due to the fact that it causes higher nonsparsity than in the uniform sampling.

Additionally to that, noise increases the nonsparsity in the signals. Our goal, however, is to �nd the exact error which is

produced by the reconstruction. The statistical and the theoretical error show high agreement in the reconstruction,

proving the exactness of the derivation. Example 3: Application on audio signals. The audio signal “Train”, included in

the MATLAB software, is considered. Its original STFT, with full set of samples, is presented in Fig. 2.5 (top left). The

STFT is perormed using a Hanning window with a 50% overlap, which allowes simple and direct reconstruction of the

audio signal. Assume that the sparsity of the signal is K = 55 and that only half of the measurements are 250 200 150

100 50 5 10 15 20 25 30 250 200 150 100 50 5 10 15 20 25 30 250 200 150 100 50 5 10 15 20 25 30 250 200 150 100

50 5 10 15 20 25 30 250 200 150 100 50 5 10 15 20 25 30 250 200 150 100 50 5 10 15 20 25 30 Figure 2.4: Sparse STFT

reconstruction of a randomly sampled signal: STFT with the full set of measurements (top left); STFT with the reduced

set of noisy measurements with variance σε = 0.1 (top right), the reconstruction with K = 8, 16, 32, 48 (remaining

subplots). available. The

STFT of the signal with the available set of measurements is presented in Fig.

2.5 (top right). The reconstructed STFT assuming the sparsity K = 10 is illustrated in Fig. 2.5 (bottom left). The

reconstructed STFT with sparsity K = 50 is presented in Fig. 2.5 (bottom right). Also, an audio signal with the
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words “You and I” is recorded. It was recorded on a MacBook Air laptop using the MATLAB

software. The signal was sampled at a frequency fs = 44.1 kHz, with 16-bit A/D conversion and single-channel mode.

Table 2.1: Total averaged reconstruction error in the reconstructed coe�cients (in dB) for NA = N/2, 2N/3, 3N/4, and

sparsity levels K = {16, 24, 32, 48} when randomly sampled signal is used. NA = N/2 K = 16 24 32 48 Theory Statistics

NA = 2N/3 −0.23 −0.35 −0.58 −0.83 −1.07 −0.74 −1.01 −1.23 Theory Statistics NA = 3N/4 −0.50 −0.61 −0.93 −1.25

−1.57 −1.00 −1.28 −1.61 Theory Statistics −0.54 −0.96 −1.35 −1.64 −0.65 −1.03 −1.37 −1.57 100 200 300 400 500 10 20

30 40 50 100 200 300 400 500 10 20 30 40 50 100 100 200 200 300 300 400 400 500 500 10 20 30 40 50 10 20 30 40

50 Figure 2.5: The recovery of the audio signal “Train”: STFT with full set of measurements (top left); STFT with 50% of

available samples (top right); Reconstructed STFT with K = 10 (bottom left); Reconstructed STFT with K = 50. 100 200

300 400 500 50 100 150 100 200 300 400 500 50 100 150 100 200 300 400 500 50 100 150 100 200 300 400 500 50

100 150 Figure 2.6: The recovery of the recorded audio signal “You and I”: STFT with full set of measurements (top left);

STFT with 50% of available samples (top right); Reconstructed STFT with K = 30 (bottom left); Reconstructed STFT with

K = 80. Assume that 50% of the samples are unavailable. Two sparsities are assumed, K = 30 and K = 80. The four

subplots in Fig. 2.6 present the original STFT, the STFT with a reduced number of measurements, the STFT

reconstruction with K = 30, and the STFT reconstruction with K = 80, respectively. The total error of the reconstruction

using different sparsities K for the two audio signals is shown in Fig. 2.7. The error is calculated according to 100

realizations. The black solid line presents the the theoretical error. The red circles are the statistical results. We can

conclude that in both cases, the results are similar, proving that the exact error equation is found and statistically

con�rmed. Example 4: Radar signals. Another suitable application for the recovery of non- sparse signals assuming

sparsity constraint is inverse synthetic aperture radar (ISAR) imaging [55–60]. In general, ISAR images require only few

components for transmission and reception, which is su�cient for obtaining information the range and cross-range of a

target. That makes them usually sparse in the 2D-DFT domain. Assuming sampling on the grid, an ISAR signal, of size N

× M , has reconstruction error Etheoretical = 10 log K NANNQM ǁSN (n)−SN K (n)ǁ22 + K (NNMA )2 σε2 . (2.37) ( ) 5 0 -5

-10 -15 -20 0 20 40 60 10 0 -10 -20 -30 0 20 40 60 80 Figure 2.7: Total error in dB after the reconstruction in 100

realizations of “Train” (left) and “You and I” (right), with various sparsity levels. Black line represent the theoretical

results, red circles is the statistical estimation. where NQ = N M − NA . The ISAR image of an airplane MIG-25 is

considered [61]. It is approximately sparse in the 2D-DFT domain. The ISAR image is shown in the top left subplot of Fig.

2.8. In the logarithmic scale (top right subplot), the nonsparsity is noticeable. Sparse reconstructions from NA = N M /2

available samples, with K = 50, 150, 250, 350 are shown in the remaining four subplots of Fig. 2.8. The error calculation,

according to Eq. (2.37), is presented in Table 2.2. Table 2.2: The

error in the ISAR reconstructed coe�cients for MIG data for assumed sparsities K

= {50, 150, 250, 350}. NA = NM/2 K = 50 150 250 350 Theory −20.92 Statistics −20.19 NA = 2NM/3 K = 50 −24.72

−28.71 −31.60 −24.36 −28.17 −30.34 150 250 350 Theory −16.36 Statistics −17.85 −17.87 −20.12 −20.12 −19.32

−21.58 −21.58 2.4 Sampling generalization For uniform sampling, the considered instants in the reduced set of
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measurements are de�ned by sampling theorem and a random subset of all such instants. The random sampling is

done at a set of fully random instants within the considered time interval. These two cases can be considered as the

special cases of the nonuniform (jittered) sampling at the instants tn = n + νn, where νn it the random variable causing

the shift in the uniform sampling at instant n (unit sampling interval is assumed without loss of 2.4. Sampling

generalization 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40

50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

Figure 2.8: Reconstruction of the ISAR MIG 25 image: Original ISAR (top left); Original ISAR in dB (top right); the

reconstruction with K = 50, 150, 250, 350. generality). the random variable (jitter) with a uniform distribution −∆/2 ≤ νn ≤

∆/2 is assumed. The two special cases of this nonuniform sampling are: (i) the uniform sampling (when ∆ = 0) and (ii)

the random sampling (when ∆ is large). The resulting reconstruction depends on the degree of randomness in the

nonuniform sampling, as it will shown next. The general form of the expected squared error in the reconstructed

coe�cients is obtained using the initial estimate. Having a signal x(tn) sampled at tn = n + νn, its initial estimate can be

written as X0(k) = A0ej2Nπktn = A0ej2Nπknej2Nπkνn. (2.38) n∑∈NA n∑∈NA The initial estimate of a single-component

x(tn), with amplitude A0 at k0, will then be X0(k) = A0ej 2Nπ knej 2Nπ (k−k0)νn . n∑∈NA The mean value of X0(k)

becomes µX0(k) = A0 E{ej2Nπ(k−k0)n}E{ej2Nπ(k−k0)νn}. n∑∈NA (2.39) (2.40) We have seen that for the �rst term, A0

n∈NAE{ej2Nπ(k−k0)n}, the mean value is µX0(k)=A0NAδ(k−k0). Forthesecondterm,causedbyarandomsamplingjitter,the

expected value is calculated as ∑ ∆/2 µν = E{ej2Nπ(k−k0)νn} = p(Θ)ej 2Nπ (k−k0)ΘdΘ ∫−∆/2 = sinπ((πk(−kk−N0k)0∆)∆)

π(k − k0)∆ = sinc N . (2.41) N ( ) The probability density function p(Θ) = ∆1 is used for the uniform random variable Θ =

νn, within the interval [−∆1, ∆1]. When k − k0 = 0, the expected value in Eq. (2.41) is 1. The variance is calculated as,

σX20(k) = |A0|2E{ej 2Nπ (k−k0)(n−m)}E{ej 2Nπ (k−k0)(νn−νm)}. n∑∈NAm∑∈NA (2.42) For k ≠ k0,n ≠ m, the second term

is written as E{ej2Nπ(k−k0)(νn−νm)} = E{ej2Nπ(k−k0)νn}E{ej2Nπ(k−k0)νm}, (2.43) which, obviously, is equal to µ2ν, as

the expectations over statistically independent νn and νm. For n = m, Eq. (2.43) produces the result equal to 1. When all

the available samples are considered, there are NA terms in the sum when m = n, and NA(NA − 1) terms when n ≠ m. In

the multicomponent case, i.e. K > 1, the variance is a sum of individual variances of each noise-only component k ≠ kl.

For K > 1, kl = k1, k2, . . . , kK, the generalized variance of the components at kl ≠ k1, k2, . . . , kK will be σX20(k) = NA|Al|2

1 − NNA−−11sinc2 π(k − kl)∆ K (2.44) ∑l=1 [ N [1 − δ(k − kl)]. ( )] 2.5. Quantization error in compressive sensing The

variance is frequency dependent. Its mean can be estimated as a frequency inde- pendent parameter G(∆) = 1 N N sinc2

πk∆ ∑k=1 ( N . (2.45) ) Note that, in the same manner as in the analysis for the partial uniform DFT and the partial

random DFT, we can de�ne variances in other measurement matrices. Example: Generalization. The nonuniform

distribution analyzes the case when the signal is close to the uniform sampling, with a small-offset of the true value.

This is known as the jittering effects, which affects many real-signals in their transmission. Consider an approximately

sparse signal in the DFT domain, 1 + κ(l), for l = 1, 2, . . . , K, X(kl) = {−3l/2K, for l = K + 1, K + 2, . . . , N. (2.46) The sparsity

level K = 7 and κ(l) is a random variable. It is uniformly distributed between 0 and 0.4. The error in the reconstructed

coe�cients is calculated and given in Fig. 2.9. The cases with NA = 2N/3 and NA = 3N/4 available samples are

considered. The error calculation is analyzed for the cases when ∆ = 0 (uniform sampling), ∆ = 1 (nonuniform sampling)

and ∆ ≫ 0 (random sampling). The assumed sparsity is varied SK = 1, 2, . . . , 15. Black color represents the statistical

values Estatistical = 10 log ||XK − XR||22 , while red color represents the theoretical res(ults, ) Etheoretical = 10 log

NA[1−NNA−−11G(∆) ǁX − XK0ǁ22 K . ( ] ) (2.47) (2.48) We can see that, in all three cases, the error signi�cantly drops

when the assumed sparsity is SK = 7 reached the signal approximate sparsity. The uniform sampling produces the best

reconstruction results in all considered cases, while an increased randomness results in a higher reconstruction error.
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The theoretical and statistical results highly agree, proving that, in the general case, the accuracy of the derived error. 2.5

Quantization error in compressive sensing So far, it has been assumed that the measurements can take as many bits as

needed for their representation. If a non-quantized signal is strictly sparse, the error, calculated as a difference between

the original and reconstructed signal, will be zero or negligi- ble. However, the reconstruction will produce some error if a

signal is reconstructed from quantized (digitized) measurements. After quantization, the input signal will be -10 -10 -15

-15 -20 -20 -25 -25 -30 -30 -35 -35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Figure 2.9:

Reconstruction error as a function of various sparsity levels K for different values ∆: for NA = 2N/3 of available samples

(left) and for NA = 3N/4 of available samples (right). Values for ∆ used are ∆ = 0 (lower lines), ∆ = 1 (middle lines), and ∆

≫ 0 (higher lines). corrupted with uniform additive noise, whose values are between the bounds of the quantization

levels. Despite the effects the quantization is exploiting, it is of great importance in the hardware implementation. The

samples measurements are stored into registers of (B + 1) bits,

where B bits are for the measurement absolute value and the additional bit is for its

sign. The

samples are formed as yB = digitalB {AX} (2.49) or for complex-valued case, where both real and imaginary parts are

quantized, as yB = digitalB{ℜ{AX}} + jdigitalB{ℑ{AX}}, (2.50) Considering the quantized measurements, the

transformation coe�cients X(k) are re- constructed with the quantization error that depends on number of bits and

number of measurements. When a signal is quantized in the amplitude, the error which produced by the quantization is

the quantization noise within the limits |e(ni)| < ∆q/2, (2.51) where ∆q is related to B as ∆q = 2−B. (2.52) To achieve

appropriate analysis, the quantization error of is assumed to be an uniformly distributed white noise, which affects the

measurements in the form y = yB + e, (2.53) where e is the vector of the quantization noise with elements e(ni). Note

that the quantization errors must be uncorrelated with each other nor with the considered signal. 2.5. Quantization error

in compressive sensing By de�nition, the mean and variance of that noise is [8] µe = E{e} = 0, (2.54) σe2 = ∆2q/12. (2.55)

When

a complex-valued signal is analyzed, both real and imaginary parts of samples add to

the noise, resulting in a variance

σe2 = 2∆2q/12 = ∆2q/6. (2.56) As mentioned in Section 2.3.1. (Additive noise), noisy y will lead to noisy X0(k) with

variance σX20(k) = σe2. The noise variance of the reconstructed signal is then σX2R(k) = σe2. (2.57) The energy of the

reconstruction error in the K reconstructed components is ǁXR − XKǁ22 = Kσe2. (2.58) In this interesting to note that, the

energy of error in the reconstructed components will remain unchanged if [52] K σe2 = K 2−2B 6 = const. (2.59) That is,

reducing the number of B bits

to B − 1 bits will require reducing the number of sparsity components from K to K/4.

The logarithmic expression of the error
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cane be written as e2 = 10 log ǁXR − XK ǁ22 = 3.01 log2 K − 6.02B − 7.78. (2.60) ( ) 2.5.1 Quantization effect analysis

The effect of quantization will be examined in the next two examples. Example 1: Sparse signal quantization error. The

sparse signal reconstruc- tion analysis is performed in this example. The signal is of the form X (kl ) = NA (1 − κ(l)), for l

= 1, . . . , K √ K (2.61) { 0, for l = K + 1, . . . , N , with length N = 256 and the random changes of coe�cient amplitudes is

uniformly dis- tributed in between 0 ≤ κ(l) < 0.2. It is considered that NA = 128 available measure- ments are quantized.

The quantization levels to bits B ∈ {4, 6, 8, 10, 12, 14, 16, 18, 20, 24} and sparsity levels K ∈ {3, 8, 13, 18} are analyzed.

The average statistical and theoretical signal-to-nose ratios S N Rst and S N Rth values are shown in Fig. 2.10. The

results are averaged over 300 realizations. The 150 100 50 4 8 12 16 20 24 150 100 50 4 8 12 16 20 24 150 100 50 4 8

12 16 20 24 Figure 2.10: Average reconstruction SNR of sparse signals with quantized measurements as a function of

number of bits B, for various numbers of measurements and sparsity levels K ∈ {3, 8, 13, 18}. The statistical error is

presented with dots and the theoretical results are presented by dot-dashed lines: when the signal is uniformly sampled

(left); nonuniformly sampled (middle); randomly sampled (right). statistical error SNRst is presented with black dots, and

the dash-dot lines are the theoretical errors, SNRth. It can be concluded that the results are of high agreement. Example

2: Nonsparse signal quantization error. The signal is modeled as X (kl ) = √KNA (1 − κ(l)), √ for l = 1, . . . , K { KNA

exp(−l/8K ), for l = K + 1, . . . , N . (2.62) The length of the signal is N = 256 and the andom uniform changes of coe�cient

amplitudes is assumed to be between 0 ≤ κ(l) < 0.2. In order to reduce its in�uence to the quantization level, the

amplitudes of the coe�cients X(k) for kl ∈/ K are X( kl) = exp(− l /(8K)). In

that case, the effect of quantization in�uences the reconstruction procedure when up to B = 14 bits are used. The enery

cause by the nonsparsity is dominant for the case when B ≥ 16. The results are presented in Fig. 2.11, proving a similar

results of the statistical results with the theoretical error. 2.6 Noise folding Another important issue is the analysis of the

quantization noise in the transform coe�cients prior to taking the measurements [62].

This noise is called the

quantization noise folding and it will be denoted by z. Then, the measurements are of the form yB + e = A(X + z), which

can be rewritten in the form of yB + v = AX (2.63) (2.64) where v = e − Az. The value e is the quantization noise which

affects the signal samples with covariance σe2I. The noise vector z is random whose covariance is σz2I. 2.6. Noise

folding 100 80 60 40 20 4 8 12 16 20 24 100 80 60 40 20 4 8 12 16 20 24 100 80 60 40 20 4 8 12 16 20 24 Figure 2.11:

Average SNR of the reconstruction of nonsparse signals with quantized measure- ments as a function of number of bits

B, for various numbers of measurements and sparsity levels K ∈ {3, 8, 13, 18}. The statistical error is presented with dots

and the theoretical results are presented by dot-dashed lines: when the signal is uniformly sampled (left); nonuniformly

sampled (middle); randomly sampled (right). Note that it is independent of e. Thus, the covariance matrix of the noise v

is C = σe2I + σz2AAH. (2.65) For the partial DFT matrix, the relation AAH = NNAI holds. The variance of v is then σv2 =

σe2 + NA σz2, N (2.66) with the covariance matrix C = σv2I. However, when sparse signalas are considered, the

quantization error only affects the K nonzero components of X. It means that the noise Az variance is NKAσe2 or ǁXR −
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XKǁ22 = Kσe2 + NAσz2. K (2.67) Finally, for the nonsparse partial DFT matrix case, the error is calculated as ǁXR −

XKǁ22 = Kσ2e + NAσ2z + K K 1 − NNA−−11G(∆) ǁX − XKǁ22 . (2.68) NA We assume that the quantization of the K main

components in X moslty in�uences [ ] the corresponding part of the error calculation. This relation is statistically

checked in the next example. Example: Error calculation with noise folding. The simulation with non- sparse signals

affects by noise folding is repeated for 300 realizations using the formula- tion from Eq. (2.68). The results are

presented in Fig. 2.12, proving a close agreement theoretical and statistical results. 100 80 60 40 20 4 8 12 16 20 24

100 80 60 40 20 4 8 12 16 20 24 100 80 60 40 20 4 8 12 16 20 24 100 80 60 40 20 4 8 12 16 20 24 100 80 60 40 20 4 8

12 16 20 24 100 80 60 40 20 4 8 12 16 20 24 100 80 60 40 20 4 8 12 16 20 24 100 80 60 40 20 4 8 12 16 20 24 100 80

60 40 20 4 8 12 16 20 24 Figure 2.12: Average SNR of nonsparse signals reconstruction with noise folding when various

number of available measurements is considered, for different sampling methods. Top subplots - NA = N/4 available

samples, middle subplots - NA = N/2, bottom subplots - NA = 3N/4. Left subplots - uniform sampling, middle subplots -

nonuniform sampling when ∆ = 1, left subplots - random sampling when ∆ ≫ 0. Chapter 3 Wideband sonar signal

reconstruction Contents 3.1 General sonar signal modelling . . . . . . . . . . . . . . . . . . . . . . . 44 3.1.1 Relation to compressive

sensing . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.2 Sequence forms and properties . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2

Sequence selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Real-data reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . .

55 3.4 Time-varying cross-range detection . . . . . . . . . . . . . . . . . . . . . 57 3.5 3.4.1 Decomposition and reconstruction . . . . .

. . . . . . . . . . . . . . . . . 58 High-resolution decomposition . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5.2 High-resolution

techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.5.3 Examples

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Many radar systems are based on a few targets in the signal, showing the

potential of using the compressive sensing algorithms for their processing. The idea of importing the CS theory to the

detection of targets and their successful recovery in the radar systems was discussed previously in the literature [55,

63–66]. In the research, indeed, the CS framework is seen as a useful tool for the reconstruction of sparse radar signals.

Even though radar and sonar systems have many common basic principles, yet the application of CS techniques is still

relatively new in sonars. Despite the similarity in the rules, there are speci�c characteristics of the sonar systems that

need to be considered for a successful analysis. The main difference is the environment in which they operate, mainly

due to entirely different propagation characteristics. This will be discussed in more detail later in this thesis. The

complexity of the problem made it di�cult for the transmitted signals to be anything more than basic forms of sonar

signals to be analyzed and used in the recent literature. The usage of speci�c sequence form of these signals has

already produced promising results in the reconstruction of sonar images. The implementation of CS idea to the

underwater sonar signals was initially discussed in [67, 68]. However, only the Alltop sequence was considered a

sequence used to form the transmitted signal and reconstruct the sonar image with a reduced number of

measurements. In [69], the results in sonar imaging were improved using the M sequence, as an excellent alternative to

the Alltop sequence, in forming the transmitted signal waveform. 43 Chapter 3. Wideband sonar signal reconstruction In

this Chapter, we will consider a whole spectrum of various sequences in the sonar imaging within the CS to �nd the best

solution to the sonar signal reconstruction problem. The considered sequences are the random binary sequence, the

random Gaus- sian, Bjorck, and Zadoff-Chu sequence, in addition to the Alltop and maximum length sequence (M
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sequence). All these sequences are studied and compared concerning the performances notable for sonar imaging

within the CS framework. The implementation of the radar systems was also expanded from narrowband [63] to

wideband [66]. Although the Alltop and the M sequences were considered theoretically, in practice, only the basic forms

were considered due to their simpler hardware implementation [70]. This challenge will also be taken into account in the

analysis of real data in the next sections. The main results presented in this Chapter were published in [71–74]. In the

analysis, it is common to consider the targets on the grid. However, in practice, they are off-grid, causing even the

targets with a small number of re�ecting points to be only approximately sparse when considered in sonar signals. This

effect of image leaking due to the off-grid impacts in�uences the CS reconstruction. It has been examined by extending

the analysis of approximately sparse and nonsparse signals from the previous section. We tackle one more problem in

this Chapter: the decomposition of two misaligned receivers for two close components. It will be shown that the

problem can be successfully surpassed using high-resolution techniques in time-frequency analysis. 3.1 General sonar

signal modelling A typical model of a transmitted wideband sonar signal is of form x(t) = s t exp(j2πfct), (3

.1) where s λt is the transmitted form of(the) sequence. The sequence is coded within

the λ width

λ, 0 ≤ t < Nλ, and modulated with the carrier frequency fc. The received signal is a dela(ye)d and attenuated version of

x(t). If one target is considered, i.e., if K = 1, the received (echoed) signal is formed as r1(t)=gs

c−ν c+ν(t−τ) c+ν ( λ ) exp j2πfc c − ν (t−τ) , (3. 2) where v is

the velocity of the target, c is the underwater speed of sound, and g is a ( ) complex-valued scattering coe�cient. Due to

the Doppler effect, the received signal is scaled in frequency for (c + v)/(c − v). Additionally, it is shifted in time for a

value τ . The signal is sampled according to the sampling theorem at instants n∆t, with ∆t being the sampling interval.

The discrete received signal, when K > 1 targets are considered, is the sum of K received discretized components of

form (3.2). That is K r(n) = gkis(n − dki) exp jωkin , (3.3) ∑i=1 ( ) 3.1. General sonar signal modelling where s(n−dki) is

the circular shift of the sequence. The parameter dki presents the time delay τ which is de�ned by the range of the

targets. The parameter ωki corresponds to the cross-range of targets corresponding to the frequency shift. If we

consider the targets to be on the grid, the coordinates are then taken from the �nite set (dp, ωq) ∈ {d1, d2, . . . , dN } ×

{ω1, ω2, . . . , ωN } (3.4) where dp takes values from dp ∈ {d1,d2,...,dN} and ωq ∈ {ω1,ω2,...,ωN}, making it a total of N2

of possible positions of the targets. If the targets are off-grid, they will spread over several points, with the most

signi�cant in�uence on a few neighboring grid points. The off-grid effects cause the analyzed signals to be only

approximately sparse. In the analysis we will �rst assume that the targets are on the grid, as it is common in literature,

and then analyze the effects of sparsity degradation due to off-grid sampling. For a pair (dp,ωq) = p, 2Nπq , the basis

function

can be calculated as ( φp ,q(n) = s(n − p) exp j2πq ) n N . (3.5) and
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received is the signal ( ) K r(n) = gkiφpi,qi(n). (3.6) of the k-th scatterer. The relation between the indices for the scatterer

k, and range ∑i=1 and cross-range positions p and q is k = p + N q, p = k − N ⌊k/N ⌋, (3.7) q = ⌊k/N ⌋, where

p = 0, 1, . . . , N −1, q = 0, 1, . . . , N −1, k = 1, 2, . . . , N 2 −1, and ⌊k/N ⌋ presenting the rounding of

k/N to the closest lower integer value. The periodic autocorrelation (AC) function of the

sequence s (n) is de�ned

as N Rs(n) = s(n + m)s∗(m) (3.8) m∑=1 Note that the AC function is associated to the coherence index µ from Eq. (1.50),

as it will be seen later in the chapter. 3.1.1 Relation to compressive sensing Taking into account the nature of the

received signal, it can be analyzed as a signal in the representation domain with basis functions φk(n)=s(n−dk)exp jωkin

, (3.9) ( ) and rewritten as or in matrix form K r(n) = gkiφki(n) ∑i=1 r = Φg, (3.10) (3.11) The vector r

is the received column vector of the echoed signal, and Φ is the matrix with basis

functions. The scattering coe�cients g(

k) = gk are within the column vector

g = [g(0), g(1), . . . , g(N 2 − 1)]T . In the

compressive sensing sense, if the signal g consists of only few target points, it means that there are only K nonzero

coe�cients in the full N × N matrix, with K ≪ N . Then, the signal is considered as sparse. Since it is sparse, it can be

recovered from the received samples y y = [r(n1), r(n2), . . . , r(nNA)]T or y = Ag where the elements of A are from (3.5),

i.e., (3.12) (3.13) ak,l = s(nl − dp) exp jωqnl , (3.14) For a given scattering k, dp corresponds to the rearranged range

coe�cients and ωq is ( ) for the rearranged cross-range coe�cients. Note that, since N samples are transmitted, and

the results lies in the area of N ×N points, the number of measurements is naturally NA = N . As mentioned in previous

chapters, the initial estimation of the signal is performed using the available observations g0 = AH y or in element-wise

form g0(k) = r(ni)a∗k,ni. If r(ni) is replaced according to (3.10), we get n∑i∈NA K g0(k) = gki φpi,qi (ni)a∗k,ni . n∑i∈NA

∑i=1 Denoting the terms ni∈M φpi,qi(ni)a∗k,ni by µ(k, ki) µ(k, ki) = φpi,q∑i(ni)a∗k,ni = s(ni − dk)s∗(ni − pi)ej2π(qi−q)ni/N,

n∑i∈NA n∑i∈NA (3.15) (3.16) (3.17) (3.18) 3.1. General sonar signal modelling the initial estimate will be K g0(k) =

gkiµ(k, ki). (3.19) ∑i=1 For a random set of measurements, the values µ(k, ki) and g0(k) are random vari- ables [53,75]. If

the calculation is performed over all samples, i.e., ni = 0, 1, 2, . . . , N −1, we get It is important to note that, even by taking

all samples, the set with measurements is N−1 µ(k, ki) = s(n − dk)s∗(n − pi)ej2π(qi−q)n/N. ∑n=0 (3.20) small. That

demands the use of
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CS based reconstruction algorithms since the number of possible target positions is N × N =

N2 ≫ NA = N. The maximal absolute value µ(k, ki), for k

≠ ki, is associated to the coherence index of the measurement matrix from (1.50), which, as mentioned, de�nes the

condition for a unique signal reconstruction. The uniqueness condition, as seen in (1.52) is K < (1 + 1/µ)/2. In the case

when all samples are taken, the analysis of the maximal absolute value µ(k, ki) for qki = qk is reduced to the analysis of

the AC function (3.8) N−1 µ(k, ki) = s(n − dk)s∗(n − pi), for qi = q. ∑n=0 (3.21) can indicate the quality of recovery we may

expect from a certain sequenc∑e. The whole expression for µ(k, ki) and k ≠ ki reduces to the analysis of the ambiguity

function (AF) [76] which is de�ned as N−1 AF (n, r) = s(n + m)s∗(m)ej2πrm/N , (3.22) m∑=0 for all n and r. It can be seen

that (3.22) equals the AF

of the Rihaczek distribution of the sequence [5, 6]. Then, the analysis of µ(k, ki) reduces

to the estimation of the maximum value of |AF (n, r)| for (n, r) ≠ (0, 0), For (n, r) = (0, 0),

the results is AF (0, 0) = µ(k, k) = 1. This step will be important in the case of time-varying signals, which is discussed in

Section 3.4. 3.1.2 Sequence forms and properties In the literature, only the basic signal processing forms are used, such

as the LFM signal, for underwater transmission [70]. Instead of the basic forms, there are a vast of other sequence

forms which can be used for the transmission in sonar systems. Some of them will be represented with their key

properties and further examined for the usefulness in the transmission. Six of them are presented in the next de�nitions.

Discrete-time sequence, of length N , is denoted by s(n), n = 0, 1, . . . , N − 1. De�nition 3.1 The Gaussian sequence is

formed as s(n) ∼ √ N (0, 1). 1 N (3.23) The Gaussian sequence is one of the most commonly used sequence forms,

whose properties are well known in the literature. The auto-correlation (AC) of the Gaussian sequence is Rs

(n) = E{s(n + m)s(m)} = δ (n − m). (3.24) Note that the AC function takes an

approximative form for �nite-duration sequences. De�nition 3.2 The binary Gaussian sequence is formed as [77] s(n) ∼

√ sign(N (0, 1)). 1 N (3.25) The signum of the Gaussian sequence is a simpler yet effective form of the Gaussian

sequence, resulting in only the sign part of the measurement. It may be considered as a binary random sequence.

De�nition 3.3 The Alltop sequence is �rst presented in [63,67]. It is formulated in the form of s(n) = √ ej2π nN3 . 1 N

(3.26) The property of this sequence is the small int√ensity of the side lobes in the auto- correlation function, which are

in the order of√1/ L. For the aperiodic AC function, the side lobes are approximately similar to 1/ L as well. De�nition 3.4

The Bjorck sequence, for a prime number N > 2, N ≡ 1( mod 4), is formulated as [78, 79] s(n) = √ exp j [(n/N )] arccos 1 1

N √ , (3.27) ( ( 1 + N )) where

https://app.ithenticate.com/en_us/report/62275429/similarity?dsc=1&dn=ac63c5fe12e4a8f6b7c58e73fddc7628cae051e120b8cd628f983462ddcd683438040eca24a590f2249fe45190b96ac123f549b47b50588dbf7674ec7b4413ef&id=885&source=643252038&node=37
https://app.ithenticate.com/en_us/report/62275429/similarity?node=37&source=643316771&id=313&dn=01cc63a964b9d90a7b334f35600649ad584c3bf0249f1f3b11327d435e3c36529d4db13c45012ada0e5aed7fe4aa67e030d0c3e0d2ed7eff8c0704a65320753c&dsc=1
https://app.ithenticate.com/en_us/report/62275429/similarity?dsc=1&dn=ef91c2e40f0222749711db0167d284a289255e4168d0fa2f758bb58c5ebc1190bb828ad2f2ac77eeec72fcb75cfc4733945466b4d0267d9fc18a416d841702e9&id=840&node=37&source=643252038


03/09/2020 Similarity Report

https://app.ithenticate.com/en_us/report/62275429/similarity 35/99

5

4

4

148

[(n/N )] is the Legendre symbol that takes values ±1 and 0 as 0, for n = 0 mod N [(n/N)] = ⎧+1, for n is

a qudratic residue mod N ⎨⎪−1, for n is a qudratic nonresidue mod N.

⎩ ⎪ 3.1. General sonar signal modelling The Bjorck sequence, for a prime number N > 2, N ≡ 3( mod 4), is formulated as

[78, 79] 1 s(n) = √ N exp j arccos 11−+NN , if [(n/N)]= −1 {1, othe(rwise. (3.28) ( )) De�nition 3.5 The maximum length

sequence (or M sequence) is a pseudo-random binary se- quence, generated with linear-shift register using the recursive

formula [80] N s(n) = cms(n − m). (3.29) m∑=1 The M sequence is a commonly used tool in the area of spread spectrum

techniques in digital communication systems. The two most frequently used systems are the direct- sequence and

frequency-hopping spread spectrum. Usually, it is normalized to√get the ene√rgy in the

N samples equal to one. The values of the M sequence, −1/ N and 1/ N

, occur√approximately equal times. For the sequenc√e

of length N = 2m − 1 the number of 1/ N values is N/2, while the number of −1/ N values

is N/

2 − 1. The periodic AC function of the M sequence is of the form Rs(n) = 1, for n = kN {−1/N, elsewhere. (3.30) In the CS

theory sense, the coherence indices of the measurement matrices formed from the M sequences and the Alltop

sequence are identical. De�nition 3.6 The Zadoff-Chu sequence is formed as [81, 82] √ 1 s(n)= N exp −j2πγn(n+2Q) N 2 ,

N even, ⎧ √1Nexp(−j2Nπγn(n+12+2)Q) ⎨ , N odd. . (3.31) where γ is integer such⎩that the greatest common divisor

gcd(γ,N) = 1 and Q is ( ) arbitraryinteger. The discrete sequence forms in one cycle are shown in Figure 3.1 (left). Their

main properties depend on their AC functions, shown in Fig. 3.1 (right). Note that, except for the Bjorck sequence (where

the imaginary part is taken), we take the real part of all of them. Also note that, the Bjorck and Zadoff-Chu are part of the

group of the so-called constant amplitude zero auto-correlation (CAZAC) sequences, since the side lobes of their

periodic auto-correlation function are almost zero-valued [83, 84]. The absolute values of the ambiguity functions of the

six sequences are shown in Fig. 3.2 (left). Even though Zadoff-Chu is a CAZAC sequence, showing good AC 0.2 0 -0.2

0.2 -20 0 20 40 60 0 -0.2 -20 0 20 40 60 0.2 0 -0.2 -20 0 20 40 60 0.2 0 -0.2 -20 0 20 40 60 0.2 0 -0.2 -20 0 20 40 60 0.2 0

-0.2 -20 0 20 40 60 (a) (b) (c) (d) (e) (f) 1 0.5 0 -20 0 20 40 60 1 0.5 0 -20 0 20 40 60 1 0.5 0 -20 0 20 40 60 1 0.5 0 -20 0

20 40 60 1 0.5 0 1 0.5 0 -20 0 20 40 60 -20 0 20 40 60 Figure 3.1: The transmitted disrete-time sequence forms s(n)

(left); The corresponding auto- correlation functions of the six sequences (right). 3.2. Sequence selection properties, it

produces values AF (m, r) = 1 for (m,

r) ≠ (0, 0). It can be seen from Fig. 3. 2 that
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it cannot be used for the analysis in the wideband sonar signal case. This will be further discussed. The sequence forms

with a reduced set of measurements is shown in Fig. 3.2 (middle) and their corresponding AFs are shown in Fig. 3.2

(right). 3.2 Sequence selection The selection of the sequences will be decided upon their reconstruction performances

in various cases with different exhaustive statistical parameters. The sonar signal is represented by various number of

components (sparsity level K) and different number of available measurements in a signal. Five cases for statistics were

considered before taking the decision of the most convenient sequence form. Case 1: Percentage of detected targets.

Since our goal is the right targetting of the objects, the �rst experiment is based on the precentage of detected

components in the signals. Consider 1000 repetitions of the experiment using the signal of the form (3.1). We consider

that the transmitted signal is of length N = 31, which is the equivalent to the number of available samples, i.e. NA = N.

The number of target components (which is equivalent to the sparsity level) is in the range 1 ≤ K ≤ 20. This case

experimentally shows that the Zadoff-Chu sequence is not suitable for the detection of components. In the case when a

small noise is present in the signals, the Bjorck and the M sequence show better results. In the case when the noise is

high (i.e. SNR= 5dB and SNR=0dB), all sequences show similar results. Case 2: Error calculation. Many problems which

can arise in practice will cause a signal to be nonsparse. The most realistic case is that the received signal is off the

grid, making the targets randomly positioned. According to Chapter 2, for the sonar signal case, the theoretical error is

Et = 10 log K ( NA + 1 ǁg−gK ǁ22 + K NA σε2 N . (3.32) where gK is the vector of the sam(e length) as g, with the nonzero

targets at their K ) positions and zero-valued everywhere else. The statistical error is calculated as Es = 10 log ǁg−gRǁ22

. (3.33) The test is performed with 100 random realizations of nonsparse images. The signal ( ) length is N = 31 with K =

5 target points. The available number of measurements is NA = N . Table 3.1 presents the statistical and theoretical

results for each sequence form and two different noise levels. -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0

10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 0.2 0 -0.2 0 10 20 30 0.2 0 -0.2 0 10 20 30 0.2 0 -0.2 0 10 20 30 0.2 0 -0.2

0 10 20 30 0.2 0 -0.2 0 10 20 30 0.2 0 -0.2 0 10 20 30 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0

10 -10 0 10 -10 0 10 -10 0 10 -10 0 10 Figure 3.2: The ambiguity functions of the full sequences (left); Transmitted

sequence forms with a reduced set measurements NA < N (middle); The AFs of the sequences with reduced set of

available samples (right). 3.2. Sequence selection 100 Percentage of reconstructed targets points 90 80 70 60 50 40 30

20 10 0 Random sequence Binary random Alltop Zadoff-Chu Bjorck 20dB M-sequence 5dB 0dB 0 5 10 15 20 Sparsity

level (targets points) K Figure 3.3: The percentage of successfully detected target positions in 1000 realizations, for 0 <

K < 20 and noise levels of SNRs= 20, 5, 0 dB. Table 3.1: Average reconstruction error of nonsparse images with K = 5

target points, NA = N = 31 and SNR= 20, 5dB. SNR= 20dB Gaussian Binary M seq. Alltop Bjorck Statistics −12.43 −12.35

−13.57 −13.42 −12.62 Theory −12.35 −12.42 −13.62 −13.69 −12.88 SNR= 5dB Gaussian Binary M seq. Alltop Bjorck

Statistics −0.96 −0.88 −1.52 −1.37 −0.83 Theory −0.83 −0.93 −1.61 −1.92 −1.01 Case 3: Robustness on number of

available measurements. In the previous cases we use NA = N . Here, we will consider the number of available samples

NA that can be higher or lower than the length of the transmitted signal N . That is, we consider the case when NA ≠ N .

Assume N = 31, with NA varying as NA = 8, . . . , 3N , taking the prime numbers. The results in 100 realizations for the

Bjorck, Alltop and M-sequence,

are shown in Fig. 3.4, Fig. 3.5, and Fig. 3.6, respectively.
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For each sequence, noise levels of SNR= 20, 5, 0 dB are considered. Case 4: Randomly positioned targets. The three

most robust sequence from the previous cases, Alltop, maximum-length and Bjorck, are further analyzed. Consider that

six real targets are positioned randomly in an area of interest. More false targets are arriving due to different reasons,

making the 20 15 20 5 0 95 10 5 20 50 9 5 20 40 20 100 5 0 80 15 60 10 20 50 9 5 40 5 20 2 0 9 5 60 80 20 40 20 2 0 15

10 2 0 50 5 95 2 0 50 9 5 20 40 60 80 60 80 100 80 60 40 20 0 Figure 3.4: Successful reconstruction performance of the

Bjorck sequence for different sparsity levels K, number of measurements taken NA and noise levels with SNRs= 20, 5 dB

(upper row) and SNR=0 dB (lower row). area nonsparse by nature. Additionally, the environment is noisy the level of

SNR=10 dB. The noisy and nonsparse interest area is presented in Fig. 3.7 (top

left). The reconstruction using the Bjorck sequence

is illustrated in Fig. 3.7 (top right). The reconstruction when M sequence and Alltop sequences are used are presented in

Fig. 3.7 (bottom). Case 5: Real-world set-up. In Fig. 3.8 (top left) an underwater boat set-up is modeled. We assume the

sparsity level is the number of target points needed to model the boat. Assume the number is K = 14, as counted in Fig.

3.8 (top). Since the number of points is high, the sequence of length N = 31 cannot be used. The next available

sequence length, satisfying the conditions for all three considered sequences (Alltop, Bjorck and M sequence) is N =

127. Assume a noise level of

SNR=15 dB. The reconstruction when the M sequence is used is presented in Fig.

3.8 (top right). The reconstruction results with the Alltop and Bjorck sequences are shown in Fig. 3.8 (bottom). 3.3. Real-

data reconstruction 20 20 2 0 5 0 9 5 15 15 10 10 20 50 9 5 5 5 20 40 100 5 0 80 2 0 60 50 9 5 40 2 0 9 5 20 60 80 20 40

20 2 0 15 10 20 50 5 0 0 95 2 5 95 20 40 60 80 60 80 100 80 60 40 20 Figure 3.5: Successful reconstruction

performance of the Alltop sequence for different sparsity levels K, number of measurements taken NA and noise levels

with SNRs= 20, 5dB (upper row) and SNR=0dB (lower row). 3.3 Real-data reconstruction In this section, the challenge of

the real data is analyzed. In summary of Section 3.2, considering all cases, the Bjorck sequence resulted in the best

solution for further work. Therefore, it will be used for the next experiments. It is concluded that the Zadoff-Chu

sequence, due to its quadratic nature, failed in the reception and reconstruction. Also, the Alltop and M sequence

performed very good and gave similar results. Therefore, for the practicality in the implementation, the Alltop and Bjorck

sequences will be used for the next experiments. An underwater experimental setup is created in the rooms of the

GIPSA Laboratory at INP Grenoble. A water tank of 2 cubic meters was used for the experiment. An interferometer

transducer is used for the transmission and reception of signals. The interferometer was supplied by the “ITER Systems”

company from Annecy, France, with the operating frequency of

468 kHz, and 100 kHz bandwidth. Note that the sequences are modulated to satisfy

the operating frequency range of the
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transducer. 15 15 20 20 10 50 10 20 50 2 0 50 95 5 5 95 50 2 0 5 2 0 95 9 20 40 60 80 100 20 40 60 80 100 100 15 80 10

60 20 40 5 2 0 50 50 95 20 95 20 40 60 80 100 100 80 60 40 20 Figure 3.6: Successful reconstruction performance of

the M sequence for different sparsity levels K, number of measurements taken NA and noise levels with SNRs= 20, 5dB

(upper row) and SNR=0dB (lower row). The transducer has one transmitter sensor and four receiver sensors. However,

since the goal is

to examine the robustness of the CS theory to the real data, the

results will be analyzed from only one receiver. The transducer was �xed under the angle of 30o close to the water

surface. The setup of the water tank, and the individual instruments used for the experiment are presented in Fig. 3.9.

The block diagram followed for the experiment is illustrated in Fig. 3.10. According to the block diagram, the setup

includes steps such as the interpolation, modulation, �ltering, and power amplifying of the sequence. When the signal is

received, the CS methods are applied. The target as in Fig. 3.9 (bottom left) was put at the tank �oor. The position of the

target to the transducer is illustrated in Fig. 3.11 and the real setup is shown in Fig. 3.9 (bottom right). The Alltop and the

Bjorck sequences are transmitted, modulated and interpolated, as in Fig. 3.12. The received signals, when Alltop and

Bjorck sequences are used, are shown in Fig. 3.13 (�rst two rows). For comparison, a chirp sequence as in [70] is

transmitted also. The result, when the chirp sequence is used, is shown in Fig. 3.13 (third row). The reconstruction using

the matched �lter 3.4. Time-varying cross-range detection 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15

20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 Figure 3

.7: The reconstruction of a noisy nonsparse target area, with noise level of SNR=10dB

and target points K

= 6: The nonsparse area of interest (top right); Reconstruction when Bjorck sequence is used (top right), when M

sequence is used (bottom left), and

when Alltop sequence is used (top right). (MF) is shown in Fig. 3.13 (middle column). The

reconstruction using the

iterative version of the OMP algorithm is shown in Fig. 3.13 (right column). 3.4 Time-varying cross-range detection In the

examples considered in previous sections, the velocity is de�ned as constant, and therefore stationary. In more realistic

cases, the cross-range (velocity) is varying and has to be detected so that the target can be successfully and truthfully

found under this setup. If the cross-range parameter is misdetected, the exact position and velocity of the target will not

be estimated accurately, leading to an incorrect reconstruction. The time variations of target velocity can be written as ν

+ αt. Target velocity corresponds to the cross-range of the received signal. Having the received signal in the form K r(n)

= gkiφki(n) (3.34) ∑i=1 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 5 10 15

20 25 30 5 10 15 20 25 30 5 10 15 20 25 30 Figure 3.8: The reconstruction of an underwater boat set-up, with noise level
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of SNR=15dB and target points K = 14: The modelled area of interest (top right); Reconstruction when M sequence is

used (top right), when Bjorck sequence is used (bottom left), and when Alltop sequence is used (top right). will have the

basis functions as φki(n) = s(n − dki) exp jωkin + jαkin2 . According to (3.5), the

basis function is ( ) φp ,q(n) = s(n − p) exp j2πq + jαn2 . n N

for (dp, ωq) = (p, 2Nπ q). The elements of the measurement matrix are then ( ) ak,l = s(nl − dp) exp jωqnl + jαn2l . ( )

3.4.1 Decomposition and reconstruction (3.35) (3.36) (3.37) The technique for decomposition of targets in sonar

signals is inspired by the idea of decomposition of time-varying signals using the polynomial Fourier transform (PFT) in

[85]. The estimation of the parameter corresponding to the cross-range in wideband 3.4. Time-varying cross-range

detection Figure 3.9: Real water tank setup: Water tank (top left); Transducer (top right); The shape of the target (bottom

left); Position of the target and transducer in the water (bottom right). Figure 3.10: General block diagram of the

experimental setup. sonar signaks is the aim of this analysis. When αi = α, the CS reconstruction will be successful. The

parameter α˜ ∈ a in µ(k, ki) is varied until the signal is

maximally concentrated, i.e., α˜ = arg max |g0α(k)|. (k,α) (3.38) The solution of (3.38) is when α˜ is equal or close to the

true value of

α. The set a represents the set of possible values for α˜.

For more target points (K > 1), the procedure is as follows: Figure 3.11: Illustration of the water tank setup: the position

of the target to the transducer, with an elevation angle of 30o. 30 20 10 0 0 1 2 3 4 5 10-5 80 60 40 20 0 0 1 2 3 4 5 10-5

Figure 3.12: Real transmitted sequence forms, interpolated and modulated to operate under the transducer

characteristics: Alltop sequence (left), and Bjorck sequence (right) • The

set of possible parameters a is de�ned. • The initial estimate, g0 (k), is calculated for

each value α˜ ∈ a. • The parameter α˜

is found in such a way that the initial estimate is concentrated the best by using (3.38). • The value of µ(k, ki) is

calculated using the determined parameter. • The �rst component of gR is reconstructed with y and µ(k, ki). • The

reconstructed component is removed from the initial estimate, g0 − gR. • The previous steps are repeated with the

reconstructed component removed from y, until all the parameters are determined and

all K elements are reconstructed.
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As an example, the analysis is performed using the Alltop sequence. The area of interest is nonsparse and noisy, with K

= 6 important target points and SNR of 10 dB. The procedure is shown in Fig. 3.14. The original interest area is shown in

Fig. 3.14 (top left). The reconstruction result is illustrated in Fig. 3.14 (bottom right). The steps of the initial estimates

for each target point are presented in the remaining subplots of Fig. 3.14. 3.5. High-resolution decomposition 0.3 0.2 0.1

0 0 0.5 1 1.5 10-3 0.3 0.2 0.1 0 0 0.5 1 1.5 10-3 0.3 0.2 0.1 0 0 0.5 1 1.5 10-3 60 40 20 0 0 0.5 1 300 200 100 0 0 0.5 1

300 200 100 0 0 0.5 1 6 4 2 0 0 0.5 1 2 1.5 1 0.5 0 0 0.5 1 1.5 1 0.5 0 0 0.5 1 Figure 3.13: Received signal - real data:

Received signals with different sequence forms (left), reconstruction with matched �lter (middle), reconstruction with

compressive sensing (right); when the Alltop sequence is transmitted (top); when the Bjork sequence is transmitted

(mid- dle); when the chirp sequence is transmitted (bottom). 3.5 High-resolution decomposition Another issue in the

decomposition of signals is the separation of closed components (targets). This can be solved by using high-resolution

techniques developed for that matter. In practice, the high-resolution techniques are frequenlty used in the direct- of-

arrival (DOA) estimation in the �eld of array signal processing [7, 85]. They can also be used in various engineering

problems [7, 86–89], such as the misalignment of the sensors [90]. Two of the methods, which have shown in the

literature to produce reliable results in separation, are Capon’s method and Music Signal Classi�cation (MUSIC) 10 20 30

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20

30 10 20 30 10 20 30 Figure 3.14: The reconstruction of a nonsparse target area, with K = 6 main target points.. The

noise level of the area is SNR=10dB: Original nonsparse area (top left); Reconstructed target area (bottom right); Initial

estimations for each target points (remaining subplots). technique. They will be presented in the form that is adjusted

for implementation using the time-frequency representations. 3.5.1 Problem formulation Consider a LFM signal as a

common case of a transmitted signal form s(t) = A(t) exp j2π(Ω0t + cht2) (3.39)

where A(t) is the amplitude (slow-varying(), Ω0 is the init)ial frequency and ch is the

chirp rate. The discrete signal s(n) with sampling interval ∆t is of the form s(n) = A(n∆t) exp j2π(nΩ0∆t + n2ch(∆t)2) .

(3.40) In Fig. 3.15, two schemes are presented. When the receiver is properly aligned ( ) with transmitter, as shown in

Fig. 3.15 (a), the received signal will be an attenuated and delayed version of the transmitted signal. The problem arises

when the receiver is not properly aligned with the transmitter. This is shown in Fig. 3.15 (b). The solid line represents

how the signal was received, while the dashed line illustrates how the signal was

supposed to be received.

Figure 3.15: The positions of the sensor: when the sensor is properly aligned with the receiver (top); when the sensor is

misaligned (bottom). Solid line represents the actually received signal. The misalignment causes false estimation of

positions of the physical sensors [90]. Also, vibrations in the environment can cause the sensors to misalign. The signal

will then change through the channel due to the dispersive nature. The received signal will change in both time and

frequency. If the received signal is assumed from two propagation paths, it will be received as r(n) = sr(n) ∗ h1(n) + sr(n)
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∗ h2(n) (3.41) where ′∗′ is the convolution of sr(n) with two transfer functions h1(n) and h2(n), coming from the two

propagation paths, respectively. In general case, for two transfer functions, the received signal consists of two com-

ponents. For t1 ≈ t2, the recieved signal is a modulated version of the transmitted signal, i.e., r(t) ≈ 2A(t) cos 2πc(t1 −

t2)t + φ1 cos 2π(Ωt + ct2) . (3.42) A special case is when the reciev(ed signal is consist)s of t(wo time-shifte)d versions

of the transmitted signal r(t) = sr(t − t1) + sr(t − t2). (3.43) The signal, with its corresponding spectrum, is presented in

Fig. 3.16 (top). The received signal and its corresponding DFT domain, are shown in Fig. 3.16 (bottom). As seen, the two

received components are closely positioned in both time and frequency. The aim is to separate them in order to

successfully reconstruct the original (trans- mitted) signal. Note that the signal attenuation is neglected since our main

interet is the signal form, which will make the calculation of the attenuation caused during the transmission easier. 3.5.2

High-resolution techniques Recall the normalized STFT with a rectangular window of the width

N 1 N −1 S T F T (ω , n) = N x(n

+ nw )e−j 2Nπ nw ω = aH (ω )x(n), 1 (3.44) m∑=0 N where the vector notation of the basis functions and the signal are

a(ω) = [1, e−jω, e− 2jω, . . . , e−(N−1) jω ]T x(n) = [x(n), x(n + 1), . . . , x(n + N − 1)]T

. Note that the value ω is introduced instead of 2Nπ k to increase the frequency axis density in order to achieve high

resolution. De�nition 3.7 The averaged Capon’s STFT is de�ned as [91, 92] SCAPON(n,ω) = aH(ω)Rˆ−x1(n)a(ω) 1 (3.45)

1 100 0.5 0 50 -0.5 -1 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 100 0.5 0 50 -0.5 -1 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 3.16: Transmitted signal with its spectrum (top); The received signal when the sensors are misaligned (bottom).

where Rˆx(n) = 1 N x(n)xH(n), (3.46)

is the autocorrelation matrix over N samples (ergodicity over N samples around n ∑n is

assumed), which comes from the power of the signal in the STFT representation domain.

By the eigenvector decomposition, the autocorrelation matrix can be written as Rˆx(n) = 1 N x(n)xH(n) = Λ(n)VH(n),

(3.47) ∑n where Λ(n) is the diagonal matrix with eigenvalues on its diagonals and V(n) is the matrix whose columns are

eigenvectors of the matrix Rˆx(n). De�nition 3.8 The averaged MUSIC STFT is de�ned as [93] SMUSIC(n, ω) =

aH(ω)VSHe(n)VSe(n)a(ω) 1 (3.48) where VSe(n) is the eigenvector matrix with Se eigenvectors with lowest Se

eigenvalues. For a signal with time-varying component, the local form of the PFT and corre- sponding STFT (local

polynomial FT - LPFT) should be used with any of the high- resolution techniques [7]. Let us consider a signal with

quadratic phase x(n) = Aej(α0n2+ω0n+φ0). (3.49) As in the case of polynomial Fourier transform, the Capon high-

resultion method can be further expanded to the LPFT by calculating the autocorrelation matrix with a

signal multiplied by an exponential factor exp(− jαn2w), i.e. xα(nw) = x(
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nw)e−jαn2w. (3.50) The parameter α is estimated as the maximal concentration value of LPFTα(k,n) = aH(ω)xα(n) 1 N

(3.51) as α = arg max |LP F Tα(ω, n)|. α (3.52) For the optimization of the parameter, we can use the concentration

measures such as α = arg minα ||LP F Tα(ω, n)||1. Since the LPFT is biased in amplitude when greatly concentrated, it

would not be appropriate to use it for the concentration comparison of different

parameters α. Therefore, for the

comparison, the standard LPFT is used. The local AC function is calculated using a sliding window function with the

optimally found parameter α Rˆx(n, Nw, α) = 1 n+Nw/2 xα(nw)xαH(nw) Nw + 1 nw=∑n−Nw/2 where Nw is the

width of a symmetric sliding window. De�nition 3.9 The optimal local Capon’s representation is

de�ned by [7, 92] LPFTCAPON(n,ω) = aH(k)Rˆ−x1(n,Nw,α)a(ω) 1 . (3.53) (3.54) In the same way, the local representation

of the MUSIC algorithm can be presented by using the eigenvectors of the autocorrelation function of the windowed

signal x(nw). 3.5.3 Examples Assume that a signal of the form (3.40) is transmitted, with frequency range between fmin

= 40 Hz and fmax = 98 Hz, sampled at frequency fs = 1024 Hz. The decomposi- tion of the signal is performed and

compared using the standard, Capon’s and MUSIC spectrogram, together with their local forms. A rectangular window is

used for the 0 0.2 0.4 0.6 0.8 1 0.55 0 0.56 0.2 0.4 0.6 0.8 1 0.55 0 0.56 0.2 0.4 0.6 0.8 1 0.55 0.56 0.57 0.58 0.57 0.58

0.57 0.58 0.59 0.6 0.59 0.6 0.59 0.6 0 0.2 0.4 0.6 0.8 1 0.55 0.56 0 0.2 0.4 0.6 0.8 1 0.55 0.56 0.3 0.4 0.5 0.6 0.7 0.57

0.57 0.58 0.59 0.57 0.58 0.59 0.575 0.58 0.6 0.6 Figure 3.17: Decomposition of the signal using high-resolution

techniques: standard STFT, i.e., the spectrogram (top left), standard LPFT (top right), Capon’s STFT (middle left), and

Capon’s LPFT (middle right), standard MUSIC STFT (bottom left), and MUSIC LPFT (bottom right). analysis of local

forms. The window is of length Nw = 64. For the MUSIC calcula- tion, we have used the Se = 100 lowest eigenvectors for

the STFT decomposition, and Se = 2 for each windowed function in the LPFT decomposition. The decomposition of the

signal is presented in Fig. 3.17. An one time-instant of Fig. 3.17 is presented in Fig. 3.18, where it is visible that the two

components can be separated using the local forms of Capon’s and MUSIC high-resolution techniques. From Fig. 3.17, it

can be seen that two components are successfully separated 1 0.5 0 0.6 0.61 0.62 0.63 0.64 0.65 1 0.5 0 0.6 0.61 0.62

0.63 0.64 0.65 10-4 2 1 0 0.6 0.61 0.62 0.63 0.64 0.65 Figure 3.18: The spectrum of one time-instant (zoomed) in the

standard LPFT (top); in the local Capon’s representation (middle) and in the local MUSIC representation (bottom). by the

local forms of the high-resolution techniques, i.e. Capon’s and MUSIC, while other approaches result in aa modulated

single component signal. The local MUSIC representation shows the best result in the sense of distinguishing the two

components. However, the local Capon’s representation is much stronger and computationally more e�cient for any

further analysis. Chapter 4 Decomposition in dispersive channels Contents 4.1 Shallow water theory and dispersive

channels - background . . . . . . 70 4.1.1 Normal mode solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 4.3 Problem

formulation - signal processing approach . . . . . . . . . . . . 76 Polynomial Fourier transform (PFT) . . . . . . . . . . . . . . . . . . . .

78 4.3.1 Local polynomial Fourier transform (LPFT) . . . . . . . . . . . . . . . . . 78 4.4 Dual form of PFT (DPFT) . . . . . . . . . . . . . .
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. . . . . . . . . . . . . 81 4.5 Model-based decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5.1 Results . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . 91 4.6 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 The decomposition and

reconstruction of signals transmitted through a dispersive channels are analyzed in this Chapter. Dispersive channels

are characterized by multi- component and multi-phase signals, even when the transmitted signal is of a simple form.

The problem of the decomposition and localization of signal component in dis- persive channels is an intensively

studied research topic. The warping techniques have showed interesting and promising results in the decomposition

and reconstruction of normal modes of the signal. The characterization of the signal propagating trough dis- persive

channels was also analyzed in [94]. The problem of localization of these signal using the phase-continuity of the signals

was studied in [95]. After the transmission through a dispersive environment, the signal consists of several components

called modes. These modes are non-stationary due to frequency dependent properties of the media for signal

propagation. Therefore, the standard Fourier transform is not suitable for the implementation on such signals. Since the

frequency variations can be approximated by a polynomial function, the natural choice for the methods developed in this

thesis is the polynomial Fourier transform (PFT). Since the number of important modes is small, the non-stationary

signals in dispersive channels can be considered as

sparse in the PFT domain. The analysis of the sparse signals in the PFT domain

is quite speci�c since the transformation basis functions are not orthogonal [96]. After the PFT analysis, it has be found

that the dual form of the PFT is a more appropriate domain for the analysis of the signal in dispersive channels. 69

Chapter 4. Decomposition in dispersive channels This form of the PFT is examined and the sparsity property is

employed reconstructing the signal with a small number of available samples. Since the dual PFT is only an

approximation of the signal modes, the next step was to use the exact normal mode form as the sparsity domain and

the domain of analysis of dispersive channel signals. Therefore, the second considered approach is based on the

decomposition of the exact modes of the dispersive channel signals. The modal-function based decomposition is

adapted and used in the analysis at last. 4.1 Shallow water theory and dispersive channels - background Shallow waters

are of great research interest for many years [94, 97–108]. Typically, shallow waters are de�ned by the depth of the

sea/ocean which is not greater than D = 200 meters. Also, signals traveling through water have a faster speed than

signal traveling through air (where the speed is c = 380m/s). The exact speed of sound in water depends on many

factors such as the salinity or the temperature of the water, but it can be generally approximated at c = 1500m/s. This,

consequently, makes their wavelengths λ much shorter, usually D ≫ λ, with D being the shallow water channel depth.

The reason they attract the researches is the extremely complex analysis of such setups. The complexity of the problem

depends on many factors, such as the volume and bottom properties. Further, the noise in shallow water occurs due to

the many activities happening on the coastlines and surface of the sea, which causes cavitations in the sea itself. Thus,

it can be concluded that shallow waters are more dispersive than deep waters. Dispersivity occurs in underwater

channels due to the roughness of the bottom, the strength of the waves, the cavity level of the water and many other

reasons. The main characteristics of dispersive channels is that they are frequency dependent. The frequency

characteristics (phase and spectral content) change during the transmission of the signal. The propagation of sound in

shallow water environment is mathematically repre- sented by the wave equations. For the analysis, let consider the

wave equation of the displacement potential ψ in free space [99, 109] ∇2ψ + 1 ∂ψ = 0, (4.1) c2 ∂t2 where ∇ presents the
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Laplacian operator for the considered coordinate system. If the Cartesian coordinate r = (x, y, z) system is assumed, the

Laplacian operator is de�ned by ∇2ψ = ∂2ψ + ∂2ψ ∂2ψ ∂y2 ∂z2 + . (4.2) ∂x2 Accordingly, for the cylindrical coordinates

system, with coordinates (r, θ, z), the Lapla- 4.1. Shallow water theory and dispersive channels - background cian

operator will be ∇2 = 1 ∂ r ∂ + 1 ∂2 ∂2 + . (4.3) r ∂r ( ∂r ) r2 ∂θ2 ∂z2 It is usual in the theory that the displacement potential

is not azimuth dependent, reducing the analysis from (r, θ, z) to (r, z). If we assume a pressure term of a point source (for

example, an underwater source, i.e., a target), the wave equation becomes inhomogeneous ∇2ψ(r, t) − 1 ∂2ψ(r, t) = f (r, t),

(4.4) c2 ∂ t2 where f (r, t) presents the volume injection in coordinate system r at time t. Using the Fourier transform pair

∞ f (t) = 1 F (ω)e−jωtdω 2π ∫−∞∞ F (ω) = f (t)ejωtdt ∫−∞ we can get a frequency and space domain wave equation ∇2Ψ(r,

ω) + c2 Ψ(r, ω) = F (r, ω), ω2 (4.5) (4.6) (4.7) where Ψ(r, ω) is the Fourier transform of ψ(r, t) and F (r, ω)

is the Fourier transform of f (r, t). Note that the Fourier transform of ∂2ψ ∂t( 2r,t)

is

equal to −ω2Ψ(r, ω). Using the notation the Helmholtz equation k = ω c , (4.8) ∇2Ψ(r, ω) + k2Ψ(r, ω) = F (r, ω), (4.9) is

obtained. As an example, we can consider a plane in the Cartesian coordinates along x-axis, which does not depend on

the coordinates x and z, when the wave equation Eq. (4.9) with F (r, ω) = 0, assumes the form ∂2Ψ(x, ω) + k2Ψ(x, ω) = 0.

(4.10) ∂ x2 It results in the solution Ψ(x, ω) = Aejkx + Be−jkx (4.11) where k = ω/c is the wave vector as in Eq. (4.8). When

B = 0, the wave is propagating directly in direction of r. When A = 0, the wave propagates against the direction r [99, 109].

In the cylindrical case, if we assume that only the range r changes, the homogeneous wave equation reduces to 1 ∂ r ∂

+k2 Ψ(r,ω)=0 [ r∂r ∂r ( ) ] resulting in Bessel functions Ψ(x, ω) = AJ0(kr) + BY0(kr) The result can be related to the Hankel

functions as Ψ(x, ω) = CH0(1)(kr) + DH0(2)(kr) = C[J0(kr) + jY0(kr)] + D[J0(kr) − jY0(kr)], (4.12) (4.13) (4.14) (4.15) where

H0(1)(kr) ≈ 2 ej(kr−π/4) (4.16) √ πkr H0(2)(kr) ≈ 2 e−j(kr−π/4). (4.17) √ πkr These results can be approximated as ejkr

e−jkr Ψ(r, ω) = A r + B r . (4.18) Assuming only direct wave (when B = 0), we can write that Ψ(r, ω) = A ejkr r , (4.19) and,

by using the derivation of the surface displacement [99], calculate that Ψ(r, ω) = −Sω 4πr ejkr , (4.20) where Sω is the

strength of the source. Note that gω(r, 0) = 4πr ejkr (4.21) is the de�nition of the Green’s function. For a source at rt = (rt,

zt), the general Green’s function is de�ned by ejk|r−rt| gω(r, rt) = 4π|r − rt| . (4.22) 4.1. Shallow water theory and

dispersive channels - background 4.1.1 Normal mode solution In the underwater acoustics, there are four main methods

of deriving the solution for a wave equation: fast �eld program, normal modes, ray theory, and the parabolic equation

model [99, 104]. In this thesis, normal mode solution will be analyzed, as one of the most widely used solutions in

underwater acoustics. It is based on solving depth-dependent equations using the method of variable separation. The

general model of the environment is presented in Fig. 4.1. The boundary of the bottom depends on the nature of the

ocean, such as the roughness, depending on the weather conditions and different environment in the ocean itself. This

will introduce more layers of the seabed. Also, the scattering of the transmitted signal can cause a non-ideal

environment for the analysis. The isovelocity waveguide model, which is presented in Fig. 4.2, characterizes a rigid

boundary of the seabed. This yields to an ideally spread velocity of c. All channel models are based on the fact that the

structure of the channel is a waveguide, with multiple normal-modes received, representing delayed versions of the

transmitted signal. The goal is to estimate and decompose the received signal, by �nding each mode separately. Figure

4.1: The general model of a shallow water environment [106]. The one-point received
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pressure �eld y from a point source located at depth zt and range r = 0 is de�ned

by the

Helmoltz equation 1 ∂ ∂y r + ρ(z) ∂ 1 ∂y + c2(z)y = − ω2 δ(r)δ(z − zt) r ∂r 2πr . (4.23) Using the method of variable

separation, we can write the pressure as product of two ( ∂r ) ∂z ρ(z) ∂z ( ) functions one dependent on range r and

another one dependent on depth z y(r, z) = Q(r)G(z). (4.24) By substituting this form into Eq. (4.23) and considering only

its homogeneous part, we get 1 1 r dQ + 1 ρ(z) d 1 dG ω2 Q[r( dr )] G [ dz(ρ(z) dz ) + c2(z)G} ] = 0. (4.25) Figure 4.2: The

isovelocity model of a shallow water environment [106]. Note that this equation has two terms Q1 1r r ddQr and G1 ρ(z)

ddz ρ(1z) ddGz + c2ω(2z) G} . The �rst term is a function of coordinate[ r(only),]while th[e secon(d term )is a functio]n of

coordinate z only. Their sum can be zero only if both of them are constant and do not depend on r and z. This constant

is called the separation constant and denoted by kr2m, where m presents the mode index. Now, by equating the second

part of the last wave equation with this constant k2rm we get 1 1 dGm Gm[ ρ(z) d dz(ρ(z) dz ) + ω2 c2(z)Gm ] =

kr2(m,ω) (4.26) or ρ(z ) d 1 dGm(z) dz [ ρ(z) dz ] + [c2ω(2z) −kr2,m(m,ω) ] Gm(z) = 0. (4.27) Note that G(0) = 0 and ddGz

|z=D = 0, where D is the ideal rigid bottom. It is interesting to note that the modal equation is a Sturm-Liouville problem

[110] whose properties are well-studied. The modes are orthogonal and the pressure function can be written as their

sum ∞ y(r, z) = Qm(r)Gm(z). (4.28) m∑=1 The modal equation, for this sum of the modes, can be written as m=1 { 1r ddr

dQdmr(r) Gm(z) + kr2(m, ω)Qm(r)Gm(z) = − ∞ δ(r)δ(z − zt) ( r ) } 2π r . (4.29) By multiplying this equation with Gn(z) and

using the property that the modes are ∑ normal for the considered interval of z, the following equation is obtained 1 d

dQn(r) r dr ( r dr ) + k2r(n, ω)Qn(r) = − δ(r)2Gπnr(zt) . (4.30) 4.1. Shallow water theory and dispersive channels -

background Its solution is given by the Hankel function Qn(r) = j 4ρ(zt) Gn(zt)H0(1,2)(kr(n, ω)r). (4.31) Ignoring the time

dependence for now, we can conclude that j ∞ y(r, z) = 4ρ(zt) m=1 Gm(zt)Gm(z)H0(1)(kr(m, ω)r). (4.32) ∑ By

approximating the Hankel function, the �nal value for pressure will be ∞ y(r, z) ≈ j √ e−jπ/4 Gm(zt)Gm(z) ejkr(m,ω)r .

(4.33) 4ρ(zt) 8πr ∑m=1 kr(m, ω) √ In terms of signal processing [105, 106], considering the time dependence of the

solution, with a source pressure �eld x(t), the normal-mode solution to the Helmholtz equation in Eq. (4.23) can be

rewritten for the pressure release as ∇ 1

∇y(r, z, t) 1 ∂2y (r, z, t) ( ρ(z ) ) − ρ (z)

c2(z) ∂t2 = −x(t) δ(r)δ(z − zt) 2πr . (4.34) When the range and the depth parameters are known, the acoustic pressure of

the received signal can be reduced to y(t). Following the approximation of the Hankel function to the received pressure

in Eq. (4.33), the corresponding FT is ∞ Y (ω) = X(ω) C ejkr(m,ω)r ρ(zt) m=1 Cm(ω) kr(m, ω)r . (4.35) ∑ where the

constant C is C = √ e−jπ/4 j √ (4.36) 4 8πr and the frequency-dependent shape function Cm(ω) is Cm(ω) = Gm(zt)Gm(z).

(4.37) since Gm(zt), Gm(z) are dependent on ω. In the isovelocity case, the general solution is Gm(z) = A sin(kzz) + B

cos(kzz), (4.38) where kz = ω 2 c − k2r, (4.39) is the vertical wavenumber. The aim o√ft(his )thesis is to introduce a novel

approach of decomposition, reconstruction and analysis of the modes using techniques of compres- sive sensing,

described in Chapter 2. 4.2 Problem formulation - signal processing approach For the practical setup, it is assumed that

the transmitter is placed in water at the depth zt. This wave is assumed to be transmitted through an isovelocity channel
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as in [94, 95, 97, 101–103]. The setup is presented in Fig. 4.3. The receiver is places at zr meters in water. The value r

presents the distance from the transmitter to the receiver. Considering the received spectrum Eq. (4.35), the transfer

function of the channel in the normal-mode case is +∞ exp(jkr(m, ω)r) +∞ H(ω) = Gm(zt)Gm(zr) m∑=1 kr(m, ω)r = At(m,

ω) exp jkr(m, ω)r , (4.40) where Gm(zt) is the transmitte√rmodal function of the m-th mode and Gm(zr) is the m∑=1 ( )

modal function of the m-th mode cor√responding to the receiver [95,105,111]. The rate of attenuation is At(m, ω) = A(m,

ω)/ r. The multi-component structure of the transfer function depends on the number of modes. Note that the dispersive

characteristic of the signal depends on the wavenumbers kr(m, ω) kr(m, ω) [95] kr2(m, ω) = ω 2 c − (m − 0.5) π 2 D .

(4.41) The speed of sound in underwater communications is c = 1500 m/s. The response to a ( ) ( ) monochromatic

signal, s(n) = exp(jω0n) (4.42) at the m-th mode, is sm(n) ≈ At(m, ω0) exp(jω0n − jkr(m, ω0)r). (4.43) Figure 4.3: The

isovelocity setup under water with depth D. The transmitter is located at position zt, the receiver is positioned at zr, with

the transmitter-receiver range r [95]. The phase velocity of this signal is νm = ω kr(m,ω) = ω ω 2 − (m − 0.5) Dπ 2 , (4.44)

c √( ) ( ) 4.2. Problem formulation - signal processing approach and presents the horizontal velocity of the

corresponding phase in the representation of the m-th mode. The group velocity represents the energy propagation of

the component of the signal. Considering the time dependence of the signal, ω+ǫ y(t) = Y (ω)e−j[ωt−kr(m,ω)r]dω, (4.45)

∫ω−ǫ and the fact that the phase must stay the same in order to have the signal remain unchanged through the whole

time interval, the group velocity is de�ned as um = dt dkr(m, ω) dr = dω = 1 dkr(m,ω) = 1 ω 2 − (m − 0.5)Dπ 2 . (4.46) dω

d dω c √( ) ( ) Since the received signal can be written in the Fourier transform domain as X(ω) = S

(ω)H(ω), (4.47) where H(ω) is the transfer function of the channel in the

normal-mode form and S(ω) is the transmitted signal Fourier transform, within signal processing framework the time-

domain form of the received signal is then equal to the

convolution of the transmitted signal and the impulse response of

(4.40), that is

x(n) = s (n) ∗ h(n), (4.48) where h(n) is the impulse response of

(4.40). Amplitude of the �rst four modes of the impulse response of a dispersive channel environment and its ideal

time-frequency representation is calculated and shown in Fig. 4.4. Our �rst goal is to present e�cient tools for

decomposition of mode functions. This will help to easier detect and estimate the signal parameters. The detection

approaches related to this kind of problems will be introduced in the next sections. 150 100 50 0 0.5 0.6 0.7 0.8 0.9 1

450 400 350 300 250 200 1.5 1.6 1.7 1.8 1.9 2 Figure 4.4: The ideal response of the four considered modes. 4.3

Polynomial Fourier transform (PFT) The standard Fourier transform is spread in the frequency domain for the signal

with polynomial phase function. The idea behind the polynomial Fourier transform (PFT) is to introduce a polynomial

function in the Fourier transform whose adjustment would improve a polynomial phase signal concentration in the
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frequency domain. Let assume a polynomial phase signal (PPS). The signal is of order P , presented in the form of x(n) =

Aej2Nπ Pl=1alnl. (4.49) The standard

Fourier transform of x(n) is ∑ X( k) = x(n)e− j2Nπkn, (4.50) ∑n

would contain all frequencies de�ned by the instantaneous frequency variations of the polynomial phase signal.

De�nition 4.1 The PFT is de�ned starting from DFT and introducing an additional polynomial phase parameters [112–

114] Xα2,α3,...,αP(k) = x(n)e−j2Nπ(α2n2+α3n3+...+αPnN)e−j2Nπkn. (4.51) ∑n The PFT parameters are denoted by

α2,α3,...,αP. The aim is to estimate the parameters α2, α3, ..., αP when the transformation of the signal is largely

concentrated. The signal components can be extracted and localized following this procedure [7, 85]. When the largest

component of the transform is found, the

signal will be maximally concentrated in the PFT representation domain. That is, when

the

PFT signal is best concentrated, we can �nd optimal PFT parameters as (â2, â3, ..., âP ) = arg max |Xα2,...,αP (k)|.

(k,α2,...,αP ) (4.52) to achieve the maximum sparsity. In the ideal scenario, the PFT of x(n) will have the highest

concentration when (α2, ..., αP ) = (a2, ..., aP ). In reality, the goal is to calculate the values to be as close as possible to

the ideal parameters, i.e., a2 ≈ â2, . . . , aP ≈ âP . 4.3.1 Local polynomial Fourier transform (LPFT) For time-varying

signals, when the parameters may change in time, a localized ver- sions of the PFT is introduced in the same way

as the STFT is de�ned by using the Fourier transform. Spectral localization of the

signal is achieved applying a window and calculating the PFT of the windowed signal to get the local PFT (LPFT). 4.4.

Dual form of PFT (DPFT) De�nition 4.2 The LPFT is de�ned as [7, 115] Xα2,α3,...,αP(k,n)=

x(n+m)w(nw)e−j2Nπ(knw+α2n2w+...+αPnNw). ∑m where w(nw) is the window function for the localized signal analysis.

In the same way as for the PFT, the maximum of LPFT is achieved when (â2, â3, ..., âP ) = arg max |Xα2,...,αP (k, n)|,

(k,α2,...,αP ) (4.53) (4.54) where α2, α3, ..., αP are the parameters that can now be adapted for each considered instant n.

However, in order to simplify the notation we will not use argument n in the parameters in this case. 4.4 Dual form of

PFT (DPFT) The dual form of PFT (DPFT) is introduced as a more suitable representation for the decomposition of

signals when their spectral content is localized within a short time- interval, while the changes of their spectral content

are signi�cant. As it is the case for both PFT and LPFT, the idea is to estimate the parameters where the maximal

concentration of the DPFT is calculated. The signal model is a polynomial-phase in the frequency domain, X(k) =

Ae−j2Nπ Pl=1blkl. ∑ The discrete DPFT will then be xβ2,β3...,βP(n) = X(k)ej2Nπ(nk+β2k2+...+βPkP). ∑k The maximum of

DPFT is achieved when (ˆb1, ˆb2, ..., ˆbP ) = arg max |xβ2,...,βP (n)|. (n,β2,...,βP ) (4.55) (4.56) (4.57) The highest

concentration is calculated when the estimated values are equal to the true ones, i.e., (β2, ..., βP ) = (b2, ..., bP ). For a

successful decomposition, the parameters should be estimated such that ˆb2 ≈ b2, . . . , ˆbP ≈ bP . Note that a local
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version of the DPFT may be used for the analysis of more complex time-varying signals. The local DPFT uses a window

in the frequency domain W (k) and it is de�ned as xβ2,β3...,βP (n, k) = W (l)X(k + l)ej 2Nπ (nl+β2l2+...+βP lP ). (4.58) ∑l

4.4.1 Sparsity in DPFT Signals with a small number of polynomial phase components, considered in the previ- ous

section, may be considered as sparse in the DPFT. These signals can be e�ciently decomposed and analyzed using the

compressive sensing methods. Note that the CS approach can be applied even in the cases when not all signal samples

in the Fourier transform are available, allowing application in denoising of acoustic signals corrupted with high

sinusoidal interferences (clutter). These frequency samples are removed, de- clared as unavailable, and the signal is

reconstructed using the undisturbed frequency values, as it will be shown in the examples. Consider that the Fourier

transform of a signal X has a reduced number of avail- able samples, for example, due to denoising procedure on

harmonic disturbances. Let consider the PPS from (4.55) X(k) = Ae−j2Nπ Pl=1blkl = Ae−j2Nπ(b1k+b2k2+···+bPkP) (4.59)

∑ and its samples at k ∈ {k1,k2,...,kNA} = NA. The initial estimate of the P-order DPFT of a signal whose Fourier

transform is X(k), using a reduced set of its samples, is xβ2,...,βP (n) = X(k)ej 2Nπ (nk+β2k2+···+βP kP ) (4.60) k∑∈NA

Assume that the parameters β2, β3, . . . , βP are correctly estimated, so that the DPFT achieves the maximum

concentration. The DPFT of a single-component signal is then xb2,...,bP (n) = Aej 2Nπ k(n−b1) = Aδ(n − b1). (4.61) ∑k

Having only one component, with the rest of the spectrum being zero-valued, we can conclude that it is sparse. In the

multicomponent signals case M X(k) = Ame−j(b1mk+b2mk2+···+bPmkP), (4.62) m∑=1 set of parameters is iteratively

estimated separately for each component individually.

Without loss of generality, we consider that the component amplitudes are decreasing,

i.e.

A1 > A2 > · · · > AM . The �rst component is matched with (β21,...,βP1) = (b21,...,bP1). (4.63) After the �rst match, other

components are considered as insigni�cant. The measure- ments matrix is found from (4.60) assuming only the

available samples at k ∈ NA. The relation for various values of n is xb21,...,bP1(n1) X(k1) ⎡ xb22,...,bP2 (n2) ⎤ = AHK ⎡

X(k2) ⎤ . . (4.64) ⎢xb2K ,...,bPK(nK) ⎣ ⎥ ⎦ ⎢ ⎣ X(kNA)⎥ ⎦

where the matix AK is de�ned by e− j2Nπ (n1k1+φ1) ··· e−

j2Nπ(nKk1+φ1) AK = ⎡ . . . . . ⎢ e−j 2Nπ (n1kNA +φNA ) · · · e−j 2Nπ (nK kNA +φNA ) ⎤ with ⎣ ⎦ ⎥ φi = ki2b21 + · · · + kiP bP

1 (4.65) (4.66) for i = 1,...,NA. Using the available coe�cients of X(k), k ∈ NA, the nonzero values in time

[xb21,...,bP1(n1),xb22,...,bP2(n2),...,xb2K,...,bPK(nK)] are reconstructed using the CS algorithm from Section 1.3.1. The

�rst component is calculated as x1 = (AH1A1)−1AH1y. (4.67) When the �rst DPFT component at n1 is recovered, the

remaining coe�cients of X(k) are estimated for the �rst element. Then, the �rst component is deleted from the set of

available measurements and the algorithm is repeated for the next coe�cient. After its parameters are found and

denoted by (β22,...,βP2) = (b22,...,bP2), both the �rst and second component are reconstructed simultaneously. The

components are reconstructed using (β21,...,βP1) = (b21,...,bP1), and (β22,...βP2) = (b22,...,bP2) (4.68) and the

components are removed for the further estimation of the remaining compo- nents. The procedure is repeated for all ni.

Note that, if the DPFT values are off-grid, we may use few samples around the position ni for a more accurate
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reconstruction. The stopping criterion of the reconstruction is de�ned by the desired error rate. The results of the

decomposition are single components of a non-stationary signal. The analysis of the signal will be done in the

frequency domain, using the dual version of the STFT, since all examined modes are spread over a broad spectrum of

frequencies. The dual STFT is de�ned by Ns /2−1 ST F TD(k, n) = X(p − k)W (p)ej N2πs pn. p=∑−Ns/2 where Ns is the

length of the window in the frequency domain. Following the form of the S-method (1.19), the dual S-method is then L

SMD(k,n) = ST F TD(k, n + i)ST F TD∗(k, n − i). i∑=−L 4.4.2 Results (4.69) (4.70) Three examples, showing the efectivness

of the proposed method, are presented. The algorithm used for the reconstruction is the OMP algorithm explained in

Section 2.1. Example 1: Ideal polynomial phase signal with sinusoidal disturbances. Let consider the case when the

polynomial phase structure of signal is fully satis�ed (4.55). Assume that the received signal consists of four

components (modes).

X(k) = X1(k) + X2(k) + X3(k) + X4(k),

(4.71) where X1(k) = ej 2Nπ (150k+0.06k2), X2(k) = ej 2Nπ (180k+0.015k2+0.00009k3), X3(k) = ej 2Nπ

(300k+0.00008k3), X4(k) = ej 2Nπ (480k+0.035k2+0.0001k3). The frequency index range is k = 0, . . . , N − 1 with N =

1024. The time domain of the signal is presented in Fig. 4.5 (top left). The corresponding frequency domain of the signal

(4.71), is shown in Fig. 4.5 (top right). Assume that NQ = 256 of samples in the frequency domain are corrupted by

strong sinusoids, resulting in the signal NQ xd(n) = x(n) + Biej(ωln+ψl). (4.72) ∑l=1 Time and frequency domains of the

corrupted signal are illustrated in Fig. 4.5 (middle). The �rst goal is to detect and remove the strong periodic

disturbances from the signal. In order to �lter the signal, a simple notch �lter is used to set to zero the disturbed

components (i.e., hard thresholding). The �ltered

signal, in time and frequency domain, is illustrated in Fig. 4.5 (bottom). The

decomposition is performed using the

DPFT according to the de�nition (4.60), assuming the third-order DPFT. The parameter β2 is varied between −0.2 to 0.2

and β3 between −0.3 to 0.3. The parameter values where the DPFT gives the best concen- tration for each mode are

detected in an iterative way. When the �rst set of parameters β2, β3 is found, the

peak in the DPFT corresponds to a single component with these parameters. The

component can be dismissed from the DPFT and

the estimation of the remaining components is continued. The DPFT decomposition of the four modes is shown in Fig.

4.6, with the estimated β2, β3 presented in Table 4.1. Table 4.1: Parameters β2, β3 for each mode corresponding to the

DPFT where the maximal concentration is achieved in the ideal case. Parameters/Mode 1 2 3 4 β2 0.1232 0.1888

0.0600 0.1536 β3 0.0132 0.0168 0.0000 0.0144 For the TF representation, we have used the S-method
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with L = 31 and Hanning window of length Nw = 256. The S-method of the received

signal

is showin in Fig. 4.7 0.6 0.4 0.2 0 0 200 400 600 800 1000 0.6 0.4 0.2 0 0 200 400 600 800 1000 0.6 0.4 0.2 0 0 200 400

600 800 1000 20 15 10 5 0 20 0 200 400 600 800 1000 15 10 5 0 20 0 200 400 600 800 1000 15 10 5 0 0 200 400 600

800 1000 Figure 4.5: Ideal case scenario: Time domain received signal (left); received signal

in the frequency domain (right): the recieved signal without disturbance (top), the recieved

signal with disturbance (middle), the signal with �ltered disturbances (bottom).

(top left). The decomposition of the four reconstructed components in the S-method represantion is presented the next

four subplots of

Fig. 4. 7. The sum of the normalized representations of the four modes is presented

in Fig. 4. 7 (bottom right). For the comparison, the original (without noise) and the

reconstructed signal in time-domain are shown in Fig. 4.8. Example 2:

Decomposition of a simulated acoustic signal. The acoustic signal, interpreted in Section 4.2. will be used for the

decomposition. Note that this signal is not characterized by the ideal polynomial phase structure, but rather it can be

approximated by a polynomial phase signal. 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 200 400 600 800 1000 0 0 200 400 600

800 1000 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0 Figure 4.6: Decomposition of the components using DPFT in the ideal case.

200 400 600 800 1000 0 0 200 400 600 800 1000 A simple one-component LFM as in (4.42) is transmitted over a

dispersive media. The dispersive channel consists of M = 4 modes. The received signal is of form (4.48). It depends on

(4.40) and (4.41). The amplitude attenuates by Am =

(6 − m)W (f ), where W (f ) is the frequency response of the Hanning window

of length Nw = 256. The depth of the dispersive channel is assumed to be

D = 20 meters. The distance between the transmitter and receiver is r = 2350 meters. The

frequency range is

fmin = 195 Hz and fmax = 430 Hz. The received signal is presented in Fig. 4.9 (top left). The DPFT of the third order is

used for the analysis, and the parameters β2, β3 are varied between −0.2 to 0.2 and −0.3 to 0.3, respectively. The
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estimated parameters are presented in the Table 4.2. The DPFT mode decomposition is illustrated in Fig. 4.9. Table 4.2:

Parameters corresponding to the maximal DPFT values for each mode in the

simulated acoustic case without disturbances. Parameters/Mode 1 2 3 4 β2 -0.0380 -0.0400 0.1780 0.1240 β3 -0.0180

-0.0420 -0.1530 -0.2340 The

Hanning window of size Nw = 512 is used for the dual STFT, while for the dual S -

method

L = 63 is used. The S

-method of the received modes is shown in Fig. 4. 10 (top left). The sum of the four

normalized component representations

is presented in Fig. 4.10 (bottom right). The S-method decomposition of the four modes, obtained 200 400 600 50 100

150 200 250 200 400 600 50 100 150 200 250 200 400 600 50 100 150 200 250 200 400 600 50 100 150 200 250 200

400 600 50 100 150 200 250 200 400 600 50 100 150 200 250 Figure 4.7: S-method decomposition of the components

in the ideal case. 0.6 0.6 0.4 0.4 0.2 0.2 0 0 200 400 600 800 1000 0 0 200 400 600 800 1000 Figure 4.8: Comparison of

the signals in the ideal case: The original signal (left); the recon- structed signal (right). 6000 4000 2000 0 0 200 400 600

800 1000 6000 4000 2000 0 0 200 400 600 800 1000 1500 1000 500 0 0 200 400 600 800 1000 8000 6000 4000 2000 0

4000 0 200 400 600 800 1000 3000 2000 1000 0 6000 0 200 400 600 800 1000 4000 2000 0 0 200 400 600 800 1000

Figure 4.9: Time-domain mode decomposition: Received signal (top left); Sum of the recon- structed modes (bottom

right); Optimal DPFT estimation for each mode separately (remain- ing subplots). Red circles - samples related to the

corresponding mode. by the DPFT before the CS theory, is presented in the remaining subplots of Fig. 4.10. Example 3:

Acoustic signal with strong disturbances. Assume the signal Example 2, affected by high sinusoidal interferences

according to (4.72). Assume the case same as in previous example, with Am = 1. The

received signal without intereferences is illustrated in Fig. 4.11 (top). It is assumed that

the received signal has high-impulse intereferences in the frequency domain in 25% of the

spectrum. The corrupted received signal is shown in Fig. 4.11 (middle). As in Example 1, the affected components are

removed using hard thresholding, and the corrupted spectral sampled are considered as not available. Time and

frequency 350 400 450 500 300 350 400 450 500 350 400 450 500 300 350 400 450 500 350 400 450 500 300 350 400

450 500 350 400 450 500 300 350 400 450 500 350 400 450 500 300 350 400 450 500 350 400 450 500 300 350 400
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450 500 Figure 4.10: S-method of the decomposed modes and sum of the normalized representations of all modes in

the simulated acoustic case without disturbances

domains of the �ltered received signal are presented in Fig. 4.11 (bottom). After

�ltering, the

estimation of the parameters is achieved using a third-order DPFT, illustrated in Fig. 4.12. The parameters β2 and β3 are

varied within the range −0.7 to 0.7. The estimated DPFT parameters β2, β3 can be found in Table 4.3. The S-method of

whole signal and individual modes given in Fig. 4.13. The compar- ison between the received signal, when no noise is

present, and the �nal reconstructed signal are presented in Fig. 4.14. It can be concluded that it is possible to

decompose and recover original values of the acoustic samples using the CS techniques for reconstruction of reduced

set of Table 4.3:

Parameters corresponding to the maximal DPFT values for each mode in the

acoustic simulated case with disturbances. Parameters/Mode 1 2 3 4 β2 0.2576 0.3556 0.5712 0.1288 β3 -0.1764

-0.1232 -0.3584 -0.0812 1500 6 104 1000 4 500 2 0 0 200 400 600 800 1000 0 0 200 400 600 800 1000 6000 104 10

4000 2000 5 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 1500 6 104 1000 4 500 2 0 0 0 200 400 600 800

1000 0 200 400 600 800 1000 Figure 4.11: Simulated acoustic signal with disturbances: Signals

in the time domain (left); Signals in the frequency domain (right): Received signal without

disturbances (top), received signal with disturbances (middle), �ltered received signal

(bottom).

4.5. Model-based decomposition 1500 1000 500 0 0 200 400 600 800 1000 1500 1000 500 0 0 200 400 600 800 1000

1500 1000 500 0 0 200 400 600 800 1000 1500 1000 500 0 0 200 400 600 800 1000 Figure 4.12: Decomposition of the

components using DPFT in the acoustic simulated case with disturbances. samples in the frequency domain. It is seen

that the obtained results are similar to the results obtained in Example 2, i.e., when the signal without intereferences is

examined. 4.5 Model-based decomposition In the previous section, the decomposition of the signal is performed by

varying DPFT parameters.

In this section, we will use the idea to vary the parameters of the modal

functions as the
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decomposition functions instead of the polynomial phase model of the signal. Since the components take the form of

modal functions in the considered acoustic signal propagation case, we take the channel depth Dm and the range r as

the parameters that are being estimated, instead of the polynomial coe�cients β2,3. The goal is to vary the parameters

of the transfer function model in the way we would vary the frequency parameters in the DPFT. Taking into account the

FT of the discrete received signal X(f) and the wavenumbers kr(m, f) as in Eq. (4.41), instead of the DPFT, given by M

X(k) = Ame−j(b1mk+b2mk2+b3mk3), (4.73) m∑=1 350 400 450 500 300 350 400 450 500 550 350 400 450 500 300 350

400 450 500 550 350 400 450 500 300 350 400 450 500 550 350 400 450 500 300 350 400 450 500 550 350 400 450

500 300 350 400 450 500 550 350 400 450 500 300 350 400 450 500 550 Figure 4.13: S-method decomposition of the

components in the acoustic simulated case with disturbances. the received signal will be then decomposed using its

normal mode form K X(k) = A(m)ejkr(m,k)r, (4.74) where m∑=1 kr(m, k) = n2∆πktc − (m − 0.5)π/Dm 2). 2 (4.75) The

speed and the frequency range in wh(ich the underwat)er acoustic system oper- ( ) ates are de�ned a priori. The values

β2 and β3 are varied within the expected range in 4.5. Model-based decomposition 1500 1500 1000 1000 500 500 0 0 0

200 400 600 800 1000 0 200 400 600 800 1000 Figure 4.14: Comparison of the signals in the acoustic simulated case

with disturbances: The original signal (left) and the reconstructed signal (right). the transform xm,β2,β3(n) = X(k)e−j(

n2∆πktc − (m−0.5)π/β3 )β2e−j2πnk/N 2 2 (4.76) ∑k ( ) ( ) If the parameters β2, β3 are correctly estimated, β2 = r and β3

= Dm then this new representation xβ2,β3(n) will achieve maximum concentration. Therefore, the represen- tation with

the highest concentration produces estimate of the parameters r and Dm (rˆ, Dˆm) = arg max |xm,β2,β3(n)| (4.77)

(β2,β3) when these values are close to the true ones, i.e. Dˆm ≈ Dm and rˆ ≈ r. As is in the case of the DPFT, when the

strongest component is detected, it is removed and the next mode parameters are detected. This procedure is

continued until the remaining components are negligible. 4.5.1 Results To illustrate the decomposition and

reconstruction, let consider the ideal case as from Section 4.2., with the frequency range between fmin = 320 Hz and

fmax = 570 Hz. The distance between the transmitter and receiver r and the true channel depth D will remain the same.

These two parameters are considered as unknown and further estimated. The transmitted signal is considered to be a

pulse with a short interval, close to a delta function, whose spectrum is then equal to 1, i.e. U(f) = 1. The received signal

is of form Eq. (4.48), which will result in X(f) = H(f). Variables D and r are arbitrarily varied. The value for depth D is varied

in the range between 0 to 100. The distance value r is varied in the range between 1000 to 3000. It has been calculated

that the maximal values are found at the position D = 20.0357 m and r = 2350 m. The decomposition of each

component is shown in Fig. 150 100 50 0 0 0.2 0.4 0.6 0.8 1 150 100 50 0 0 0.2 0.4 0.6 0.8 1 150 100 50 0 0 0.2 0.4 0.6

0.8 1 150 100 50 0 0 0.2 0.4 0.6 0.8 1 Figure 4.15: Decomposed modes in the time domain using the model-based

technique 4.15. The sum of the received coe�cients and the sum of reconstructed components are shown in Fig. 4.16.

150 100 50 0 0 0.2 0.4 0.6 0.8 1 150 100 50 0 0 0.2 0.4 0.6 0.8 1 Figure 4.16: Sum of the components: received (left);

reconstructed (right) The decomposition results will be analyzed in the frequency domain using the dual S-method from

Eq. (4.70). A Hanning of size Nw = 63 is used as the window. The dual S-method representation of a sum of the four

received modes is shown Fig. 4.17 (top left).

Sum of the decomposed components and the amplitudes of individual components are given in

Fig.
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4.17 (bottom right), with the decomposition of each mode individually in the other four subplots of Fig. 4.17. 4.6.

Comparison 200 250 300 350 400 450 260 280 300 320 340 360 200 250 300 350 400 450 260 280 300 320 340 360

200 250 300 350 400 450 260 280 300 320 340 360 200 250 300 350 400 450 260 280 300 320 340 360 200 250 300

350 400 450 260 280 300 320 340 360 200 250 300 350 400 450 260 280 300 320 340 360 Figure 4.17: S-method

decomposition of the components when model-based decomposition is used. 4.6 Comparison The mean squared error

(MSE) in the decomposition is calculated as e = 10 log

k,n |SMDR (k, n) − SMDm (k, n)| 2 m (4.78) ∑ k,n |SMD∑R (k,

n)|2 where SMDR(k, n) and SMDm(k, n) a∑re the sum of received dual S-method compo- nents and the sum of S-method

components of modes of the received signal after the decomposition. The errors in dB are shown in Table 4.4. Table 4.4:

Error in the form of MSE in dB for the examples considered Case MSE [dB] Ideal-case DPFT Simulated acoustic signal

DPFT Simulated acoustic signal with disturbance DPFT Model-based technique -12.6198 -10.1590 -7.9361 -30.5013 The

MSE value of the model-based technique gives the best results in terms of error, which is expected due to its speci�c

(i.e., not generalized) nature to �nd the exact values of parameters. The method is not sensitive to noise until the

threshold for the detection is reached, i.e. when the input SNR is approximately −5 dB. When the threshold is reached,

the error sharply increases, since some modes are not detected. Chapter 5 Compressive sensing in image denoising

Contents 5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.2 Gradient-based reconstruction algorithm . . . .

. . . . . . . . . . . . . 97 5.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2.2 Corrupted pixel selection procedure

. . . . . . . . . . . . . . . . . . . . . 97 5.2.3 Pixel selection and reconstruction . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.4 Results . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3 Error calculation in nonsparse images . . . . . . . . . . . . . . . . . . . 102 5.3.1 Noise-

only coe�cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.2 Nonsparse images reconstruction error . . . . . . . . . . . . . . . . .

. . . 105 5.3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 This chapter presents further work on

compressive sensing, which can be considered as an extension of results presented in the previous chapters. Here, we

focus on the reconstruction and error calculation of general images, analyzed

in the two-dimensional discrete cosine transform (2D-DCT) domain.

In the �rst part of the chapter, a method for recovery of sparse images is presented. The algorithm is based on a

gradient-descent procedure. The proposed algorithm per- forms blindly to detect and reconstruct

corrupted pixels. The assumption is that the image is sparse in the

2D-DCT domain and
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that the noise degrades this property. The advantage of the proposed reconstruction algorithm

is that

the uncorrupted pixels remain unchanged in the reconstruction process. The

proposed method can be used without explicitly imposing the image sparsity.

The algorithm is compared with some state-of-the-art algorithms, proving its reconstruction robustness. In most cases,

images are approximately sparse or nonsparse in the 2D-DCT do- main. The sparsi�cation step of images can produce

the error in their �nal reconstruc- tion. In the second part of the chapter, the exact error is derived for nonsparse images

reconstructed under the sparsity assumption. The mean squared error calculation the- ory is compared to the

corresponding statistical values. 95 Chapter 5. Compressive sensing in image denoising 5.1 Problem formulation Let

consider an 8-bit N × M image, x(n, m), meaning that its pixel values are integers between 0 and 255. For compressive

sensing methods, it should be assumed that the image

is sparse in the 2D-DCT domain. De�nition 5.1 The 2D-DCT

(and its inverse) of an image

x(n, m) is de�ned by [8, 116] N −1 M −1 X(k, l) = x(n, m)ϕ (k,

l, n, m) N∑n=−01 Mm∑=−01 (5.1) x(n, m) = X(k, l)ψ(n, m, k, l),

where ϕ(k, l, n, m) is the 2D-DCT basis function and ψ( n, m, k, l) is the 2D-DCT

in- ∑k=0 ∑l=0 verse basis function, de�ned as ϕ(k, l, n, m) = ψ(n, m, k, l) = ckcl cos π(2n + 1)k π(2m + 1)l cos ( 2N ) 2M .

(5.2) ( ) The constants ck and cl are scaling constants de�ned as ck = 1/ N , for k = 0 √ cl = 1/ M ,

for l = 0 √ . { 2/ N , for k ≠ 0 { 2/ M , for l ≠ 0

(5.3) In matrix form√,the image and its 2D-DCT can be wr√itten as
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x = ΨX and X = Φx, respectively, where Ψ and Φ are the

rearranged matrices de�ned in (5.2). For the compressive sensing framework,

we assume that the considered image is K-sparse in the 2D-DCT domain

and that only NA ≪ NM of its pixels are available at the positions (n, m) ∈ NA = {(n1, m1), (n2, m2), ..., (nNA, mNA)}.

Consequently, assuming that the positions of the corrupted pixels are known, we can set their values to zero (as it is

done in the initial estimate). The

initial image form is then presented as xa(n, m) = x (n, m) for (n, m) ∈ NA

{0 elsewhere. (5.4) Note that the nonzero entries of (5.4) are the measurements within the CS framework y =

[x(n1,m1),x(n2,m2),...,x(nNA,mNA)]T. (5.5) The image is sparsi�ed

according to the quantization matrix of the JPEG standard [116]. The

quality factor (QF) de�nes the level of sparsi�cation

of the image. For different QFs, which in�uence the level of sparsity in the

block,

the quantization matrix is de�ned as QQF = round(Q50 · q), (5.6) 5.2. Gradient-based reconstruction algorithm where

Q50

is the standard quantization matrix and the value q is the level presented as q=

2 −

0.02QF , for QF ≥ 50 { QF 50 , for QF < 50 . (5.7) The
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reconstruction procedure is performed using blocks of the image of size 8 × 8. Then, each block is analyzed and

recovered separately. After each block is recovered, the full image is restored by combining the blocks back. Also,

different quality factors are assumed to compare the performance of the algorithm with various

sparsity levels.

5.2 Gradient-based reconstruction algorithm Here, we will consider an image with NQ = N M − NA pixels affected by

noise. The amplitude of noise can be within the

range of the available NA pixel values. The aim is to reconstruct the corrupted pixels without

knowing the number of affected pixels nor their positions, while not changing the

values of available noise-free pixels. 5.2.1 Algorithm The

algorithm is based on the minimization of the sparsity measure through

itera- tions [34, 117, 118]. Each particular

image pixel is considered as possibly corrupted. Its value is varied by adding an estimation

parameter, ±∆. For each pixel, the gradient sparsity measure ǁXǁ1 is estimated based on its �nite

difference value. The pixel pro- ducing the largest gradient estimate is marked as corrupted and

omitted. Then the iterative process is repeated until the sparsity measure does not change signi�cantly. All

detected corrupted pixels are set as unavailable. When the

set of corrupted pixels is de�ned, the reconstruction is performed. The reconstruction procedure is described in

Algorithm 6 of Appendix [34]. The corrupted pixels are varied through the recon- struction procedure to produce the

most sparse solution. During the reconstruction process, the uncorrupted pixels remain unchanged. The

algorithm can also be used when the noise is much stronger than the signal itself, meaning that the

corrupted pixels are distinguishable from the uncorrupted pixels (salt-and-pepper noise), so that their

positions are easily found. When we have strong noise in the image, we will omit the corrupted pixels

from the calculations and continue with the reconstruction as described in Algorithm
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6 of the Appendix. 5.2.2 Corrupted pixel selection procedure For the selection of potentially corrupted pixels, let assume

that one pixel is corrupted at a position (n0, m0). The image with the corrupted pixel will be de�ned by xa(n, m), where

the corrupted pixel is xa(n0, m0) = x(n0, m0) + z, with z being the noise value. Following the Algorithm 6, the corrupted

pixel is varied according to ±∆ to form xa

+(n, m) = x (n, m) + (z + ∆) δ(n − n0, m − m0) xa −(n, m) = x (n, m) + (z − ∆)

δ(n − n0, m

− m0). (5.8) The gradient of the sparsity measure is estimated as g(n0, m0) =

X+a 1 − X−a 1 (5.9) where X+a and X−a are the 2D-DCT of

th∥∥e im∥∥ages ∥∥(5.8)∥∥with coe�cients Xa

+(k, l) and Xa −(k, l), respectively. Assume that the 2D -DCT of the corrupted

pixel is (z ± ∆) ϕ(k, l, n0, m0). The sparsity measures

can be approximated as a sum of the original image measure and the measure of the

corrupted pixel (with the ∆ shifts) N −1 Xa+ 1 = Xa +(k, l) ∼= ǁXǁ 1 + |z + ∆| C ∥ ∥ ∥ k∑,l=

0 N −1

∣ ∣ (5.10) Xa− 1 = Xa−(k, l) ∼= ǁXǁ1 + |z − ∆| C where C which depends on the corrupted pixel position (m0, n0) and the

size of the ∥ ∥ ∥ k∑,l=0 ∣ ∣ image. The gradient is then g(n0, m0) =

X+a 1 − X−a 1 ∼= |z + ∆| C − |z − ∆| C. (5.11) For variations from the

t∥∥rue i∥mage∥∥valu∥e smaller than the step |z| < ∆ we get g(n0, m0) ∼= 2Cz ∼ z. (5.12) From (5.12), it can be concluded

that the gradient is proportional to the intensity of noise at the corrupted pixel. 5.2.3 Pixel

selection and reconstruction The aim is
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to �nd the positions of corrupted pixels and select which pixels are uncor- rupted. According to

the previous subsection, this will be achieved by

repeating steps 9-15 of the gradient-based reconstruction procedure in Algorithm 6 in the Appendix. Note that this

procedure should be repeated for all pixels, in order to estimate which pixels are corrupted. The full method of pixel

selection and recovery is presented in Algorithm 7 of the Appendix. During the reconstruction, we include all previously

de- tected

positions of corrupted pixels in each iteration. The procedure is repeated until a required

precision is achieved. The algorithm is repeated

for each block, and the image is combined back when all blocks are reconstructed. In the reconstruction, we have

concluded that the edge effects of some blocks can in�uence reconstruction success. Small pieces of the neighboring

blocks may appear 5.2. Gradient-based reconstruction algorithm at the edging pixels in the current block. Since the

algorithm �nds the solution by minimizing the sparsity, it will recognize those small pieces as disturbances in the

considered block. It will try to select them as corrupted pixels, meaning that they are removed. To overcome this

problem, the pixel selection

analysis is done using partially overlapping blocks. Only the central parts of the blocks (the

ones which are not overlapped) are included for the �nal reconstruction.

5.2.4 Results The image “Peppers”, of size N × M = 512 × 512, is used to demonstrate the presented method. The image

is affected by a combination of two noise types. These disturbing noise types are the salt-and-pepper noise (having

intensity either 0 or 255) and the uniform noise (noise in the range between 0 and 255). In color images, the noise is

randomly positioned in each of the three channels (R, G, and B) separately. Assume that 50% of the pixels are affected

by noise, with 10% of them being the uniform noise. The results of the presented denoising algorithm are compared with

a 5 × 5 median �lter and two

state-of-the-art methods. The �rst method is from [119], based on adaptive �ltering.

The

second considered method is the total-variation imaging algorithm from [120, 121]. The results are shown in

Fig. 5.1. The original image is presented in Fig. 5.1 (top left). The image with
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the corrupted pixels is shown in Fig. 5.1 (top right). The reconstruction using the proposed method

and the reconstruction of the image using the 5×5 marginal median �lter are presented in Fig. 5.1

(middle). In Fig. 5.1 (bottom), the reconstruction with the two

state-of-the-art algorithms is shown. The methods for comparing the reconstruction results, along with the speci�c

values of the comparison parameters, will be given next. Comparison The

performance of the algorithm will be examined using the SSIM index as well as MAE and PSNR, with

respect to the original image. The

SSIM index is introducted [122] and

de�ned as a function of luminance, contrast and structure comparison between two images,

i.e. SSIM(xo, xr) = (2µxoµxr + c1)(2σxoxr + c2) (5.13) (µ2xo + µ2xr + c1)(σx2o + σx2r + c2) where xo and xr

are the original and the reconstructed image, respectively. The values

µxo, µxr correspond to the mean values of the two images, σxoxr is the covariance between xo and xr, σx2o, σx2r are the

variances of the considered images. The constants c1 and c2 are used for stabilization. The SSIM value is a constant

between the values 0 and 1, where 1 is obtained when the similarity between images is complete and 0 is obtained

when no similarity is present. The MAE is calculated as M AE (xo , xr ) = mean(mean(|xo − xr |)). (5.14) Figure 5.1:

Reconstruction of color image “Peppers” corrupted with 50% combined noise: Image with

corrupted pixels (top left); Reconstruction using the proposed method

(middle left); Reconstruction using the 5 × 5 median �lter (middle right); Reconstruction

using the

two state-of-the-art algorithms (bottom). Table 5.1 shows the SSIM index and MAE for different quality factors different

percenage of corrupted pixels in the grayscale image “Lena”, presented in Fig. 5.2 (top left). Note that the quality factor
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(which determines the sparsity level of the block) nor the number of the corrupted pixels are not known by the gradient

algorithm. 5.2. Gradient-based reconstruction algorithm Table 5

.1: SSIM index and MAE between original and reconstructed image “Lena” for various

quality factor QF and percentage of corrupted pixels.

SSIM QF 12.5% 25% 37.5% 50% MAE 12.5% 25% 37.5% 50% 5 0.99 0.99 0.91 0.64 0.41 1.08 3.28 10.80 10 0.99 0.98

0.92 0.64 0.38 1.05 3.18 11.63 25 0.99 0.98 0.92 0.63 0.37 1.08 3.27 12.28 50 0.99 0.98 0.92 0.62 0.42 1.17 3.45 12.79

75 0.99 0.98 0.91 0.61 0.47 1.31 3.60 13.10 90 0.99 0.97 0.91 0.60 0.61 1.54 3.85 13.75 Table 5.2: PSNR and SSIM for

the reconstruction of the eight test images in Fig. 5.2. The

results are obtained by the proposed, two-stage (2-stage) adaptive algorithm [119] and total

variation L1

(TV-L1) [120, 121] method.

PSNR SSIM Test image Proposed 2-stage TV-L1 Proposed 2-stage TV-L1

Pout 45.87 39.59 39.46 0.98 0.63 0.92 Lifting body 43.92 35.90 40.15 0.99 0.73 0.94 Peppers 42.74 39.84 38.58 0.99

0.62 0.95 Lena 41.22 35.87 35.94 0.98 0.75 0.91

Boat 39.33 34.15 34.41 0. 97 0. 73 0. 85 Butter�y 39.22 36.20 35.04 0. 98 0. 81

0. 88 Camera 36.54 36.36 33.01 0. 94 0. 81 0.

79 Tissue 32.44 30.92 29.35 0.91 0.86 0.73 The peak

-to-noise ratio (PSNR) and the SSIM index will be used for the comparison of the

algorithm with the state-of-the-art algorithms based on a set of eight images from MATLAB software. The PSNR for an

8-bit image is 2552 P S N R(xo , xr ) = 10 log10 mean(mean(|xo − xr |)2 ) ( ) . (5.15) The eight test images are shown in

Fig. 5.2, including the image peppers, analyzed earlier. The

comparison among the reconstruction algorithms for eight test images corrupted by 50%

of combined noise, is given in Table 5. 2. This table
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shows the robustness of the proposed algorithm in comparison with the other two methods for image reconstruction.

Figure 5.2: The eight test images used for the comparison between the proposed algorithm and two state-of-the-art

algorithms. 5.3 Error calculation in nonsparse images In the previous subsection, the images are considered as being

sparsi�ed according to the quality factor and the corresponding quantization matrix, since

a signi�cant amount of the energy is concentrated within a small number of

2D-DCT components. However, the remaining nonzero coe�cients make that the original images are

only approximately sparse or nonsparse. Since, in CS theory, sparsity should be assumed,

the reconstruction algorithms will not be able to recover small valued coe�cients of nonsparse

signals. The

exact formulation of the expected squared reconstruction error in the case of nonsparse images is

given in the form of a theorem [123]. Theorem: Assume an image, which is nonsparse in the

2D-DCT domain, with the largest amplitudes

in this domain Ar, r = 1,2,...,K.

Assume that only NA out of total NM samples are available, where 1 ≪ NA < NM. Also

assume that the image is reconstructed under the assumption that it is K -sparse. The energy

of error in the K reconstructed coe�cients ǁXK−XRǁ22 is related to the energy of unreconstructed

components ǁXK0−Xǁ22 coe�cients as follows:

ǁXK−XRǁ22 = KN(AN(NMM−−N1A)) ǁXK0−Xǁ22 , (5.16) 5.3. Error calculation in nonsparse images where ǁXK−XRǁ22 =

KN(AN(NMM−−N1A)) NM A2r , r=∑K+1 and NM ǁXK0−Xǁ22 = A2r. r=∑K+1 The proof is based on the initial estimate of

the image X0(k, l) = x(n, m)ϕN (n, k)ϕM (m, l) (n,∑m)∈NA where k = 0, 1, ..., n − 1, l = 0, 1, ..., M − 1. In a matrix form we

can write X0 = ATy. (5.17) (5.18) (5.19) (5.20) The coe�cients in (5.19)

act as random variables, with different statistical prop- erties at positions of the image

components,
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(k, l) = (kr, lr), and positions not corre- sponding to image components, (k, l) ≠ (kr, lr). 5.3.1 Noise-only coe�cients Let

assume �rst the case when K = 1 at (k1, l1). Assuming the amplitude to be A1 = 1, the initial estimate can be written as

The variable X0(k, l) = ϕN (n, k1)ϕM (m, l1)ϕN (n, k)ϕM (m, l). (n,∑m)∈NA xk1l1 (n, m, k, l) = ϕN (n, k1)ϕM (m, l1)ϕN (n,

k)ϕM (m, l) (5.21) (5.22) is random for random set of values of (n, m) where the image is available. Its initial estimate is

X0(k, l) = xk1l1(n, m, k, l). (5.23) (n,∑m)∈NA When (k, l) ≠ (k1, l1), the 2D-DCT coe�cients correspond to position where

the image component is not present. In this case, the initial estimate

behaves as a random Gaussian variable [53]. Following the orthogonality of the basis

function and the fact that values of

xk1l1(n, m, k, l) are equally distributed, the mean value of the initial estimate is µX0(k,l) = E {X0(k, l)} = 0, (k, l) ≠ (k1, l1).

(5.24)

In the case of a coe�cient corresponding to the image component, using the same or-

thogonality property and the assumption of equal distribution of values

xk1l1(n, m, k, l), it follows that µX0(k,l) = E {X0(k, l)} = NNMA , (k, l) = (k1, l1). (5.25) For the zero-mean random variable,

the variance is σX20(k,l) = E x2k1l1(n, m, k, l)+ { (n,∑m)∈NA xk1l1(n,

m, k, l) xk1l1 (i, j, k, l) . (5.26) (n ,∑m)∈ NA (i(, ji ,)∑j≠)∈(

nN,Am) } As in the case when (k, l) ≠ (k1, l1) is observed, it can be concluded that N −1 M −1 xk1l1(n,m,k,l) = 0. (5.27)

∑n=0 m∑=0 Multiplying the left and the right side of (5.27) by xk1l1(i,j,k,l),

and taking the expectation of both sides we get N −1 M −1 E xk1l1 (n, m, k,

l)xk1l1(i, j, k, l) = 0, (5.28) { ∑n=0 m∑=0 } with (i, j) ∈ N. Values xk1l1(n, m, k, l) are equally distributed. Therefore, the

terms E{xk1l1(n, m, k, l)xk1l1(i, j, k, l)} for (n, m) ≠ (i, j)

are the same and equal to a constant D. The total number of these terms is NM − 1.

Furthermore, based on (5.28) we get

(N M − 1) D + E x2k1l1 (n, m, k, l) = 0. The initial variance de�nition can be{written as } σX20(k,l) = NAE{x2k1l1(n, m, k, l)}

+ (NA2 − NA)D, (5.29) (5.30)
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as there are exactly NA expectations with quadratic terms in the �rst summation and NA(NA −

1) terms in the second variance summation equal to D. In order to determine the unknown term

E x2k1l1(n, m, k, l) , several special cases should be taken into account. Consider the general case when k ≠ k1, k ≠ N −

k1, l ≠ l1, l ≠ M − l1. Then { } E{x2k1l1(n, m, k, l)} = E{ϕ2N (n, k1)ϕ2M (m, l1)} × E{ϕ2N (n, k)ϕ2M (m, l)} = N 2M 2 1 (5.31)

holds. Incorporating this result into (5.29) we get that D=− 1 1 N2M2 NM − 1 . (5.32) 5.3. Error calculation in nonsparse

images Next, based on (5.30), the variance can be written as σX20(k,l) = NN2AM(N2(MN M− N−A1)) . (5.33) This result

also holds when (k1, l1) = (0, 0). The

special cases of the 2D-DCT indices are considered in

[123]. Note that, when A1 ≠ 1, the result is multiplied by A21. As N M ≫ 1, an accurate approximation, when all special

cases are included, for the average variance of noise-only coe�cients follows σX20 ≈ A21 NN2AM(N2(MN M− N−A1)) .

(5.34) In the realistic case of several components in the 2D-DCT domain, the observed random variable becomes K X0

(k, l) = Ar ϕN (n, kr )ϕM (m, lr ) × ϕN (n, k)ϕM (m, l). (5.35) (n,∑m)∈NA ∑r=1 In

this case, the coe�cients at noise-only positions (k, l) ≠ (kr, lr) are random variables

formed as the summation of independent zero-mean Gaussian variables over r. The

unavailable pixels in each component add to the noise. The noise from each component is

proportional to the squared amplitude of that component, following (5.34) with Ar, r = 1, ..., K.

Therefore, the mean value

of the K 2D-DCT coe�cients is µX0(k,l) = N M N K A Arδ(k − kr, l − lr). ∑r=1 The

average variance of noise-only coe�cients in this case easily follows

as σX20 = A2r NN2AM(N2(MN M− N−A1)) K . ∑r=1 5.3.2 Nonsparse images reconstruction error (5.36) (5.37) The

image is reconstructed under the K-sparsity constraint. The conditions for a unique reconstruction are assumed to be

met. According to (5.37), one nonreconstructed element behaves as a noise with variance σX20 = A2r NN2AM(N2(MN

M− N−A1)) . (5.38) which leads that the variance of all components which are not reconstructed will be NM σT2 = A2r

NN2AM(N2(MN M− N−A1)) . (5.39) r=∑K+1 The total noise energy from the nonreconstructed coe�cients in the K

reconstructed components is ǁXK−XRǁ22 = KNN2MA22σ2T = KN(AN(NMM−−N1A)) NM A2r. (5.40) r=∑K+1 Note that

https://app.ithenticate.com/en_us/report/62275429/similarity?id=30220&node=3791&source=146229418&dsc=1&dn=281ba3f8193c983109cc96305402297e84626c9fc7f236bde48bbcdd638635f91be370f178560d16cb1efadd46f54d54370ce7193218f31d478f4420fdb59122
https://app.ithenticate.com/en_us/report/62275429/similarity?id=30226&source=146229418&node=3791&dsc=1&dn=570375d2e552b4431b43896088f8267ad43892d2a09a05fa1094586c437878ca5dda50a581b5733076de3049c4b117766125cdbb7ad304d6d82ffcf244bdfa6a
https://app.ithenticate.com/en_us/report/62275429/similarity?source=583094631&node=37&id=3330&dn=1d8ec0ed9a2ff3a81c8c472304501b4bfaba85a2d7dc72b366c931d684417556dc709f192b441cf9edef997e86216feefd1b4d01f7b633669c8d164a00cbd90b&dsc=1
https://app.ithenticate.com/en_us/report/62275429/similarity?dsc=1&dn=45d8945d9aad560ad6214f539f3228a3df92df616e5f23a8c7217bacd5b1cbd46816733d2dd4e8ff239c1e5bb1287eed6d248953a618faa7493b18aeff6f5743&id=3333&node=37&source=583094631
https://app.ithenticate.com/en_us/report/62275429/similarity?dsc=1&dn=6a39c5b2802fd2afa85cae74400a804a9a7cc1f74d598a421281b4b130c48c73b22763e417230fbc8eed75a8ddfc5499d75aebc3a47bea48a1790a1eefa4739a&id=30239&node=3791&source=146229418


03/09/2020 Similarity Report

https://app.ithenticate.com/en_us/report/62275429/similarity 65/99

3

10

41

3

the noise of the nonreconstructed coe�cients can be related to their energy, NM ǁXK−Xǁ22 = A2r. (5.41) r=∑K+1 From

the previous analysis it follows that ǁXK−XRǁ22 = KN(AN(NMM−−N1A)) ǁXK −Xǁ22 . (5.42)

This completes the proof of the theorem. 5. 3.3 Numerical results

An image set with standard MATLAB images is used for the numerical examination of the theorem. The set is presented

in Fig. 5.3. Each image is

split into B × B = 16 × 16 blocks. The reconstruction is performed under the sparsity

assumption K = 16

per block, with 60% of pixels available. The reconstruction is performed using the OMP algorithm. The

errors are calculated for each block separately and then the results are averaged over all blocks in

the image. The statistical PSNR, for

an 8-bit image, is P S N Rstatistics = 10 log ( ||XK − XR ||22 ) 2552 , (5.43) and the theoretical PSNR, according to the

thereom, is 2552 P S N Rtheory = 10 log ( K NBA2(B−N2−A1) ||XK − X||22 ) . (5.44) The

results are presented in Table 5.3, con�rming a high agreement between the

results. Table 5.3: Statistical and theoretical calculations of the PSNR for 8 test images in Fig. 5.3. Test image Lifting

body Boat Pout Autumn Pirate Pears Peppers Football Statistics 82.97 81.97 80.35 90.81 70.97 78.77 79.16 68.69

Theory 83.11 82.13 80.42 90.92 71.10 78.86 79.23 68.63 5.3. Error calculation in nonsparse images Figure 5.3: The

eight test images used for the error analysis. Conclusions The compressive sensing theory can be used to develop a

successful sampling technique in different �elds and various signals. The idea of using a small number of

measurements for the signal acquisition improves the e�ciency of storage, memory requirements, and transmission of

signals. Accurate recovery of signals sampled in such a way is the primary goal of compressive sensing and sparse

signal processing. Since many signals in nature can be represented as sparse in some transformation domain, the

technique showed huge potential in real-world problems. However, the idea is not yet fully developed and applied in the

underwater acoustics �eld. The non-stationary nature of such signals makes it suitable for the analysis using time-

frequency tools under the signal processing approach. In the compressive sensing sense, non-stationary signals are

only approximately sparse or nonsparse in the corresponding transformation domain. In this thesis, three major points

are considered, with the aim to �nd a success- ful solution for applying compressive sensing methods to the underwater

acoustics. It is important to notice the nonsparse characteristic of the signals received in disper- sive channels. The
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nonsparsity, in general, will produce errors in the reconstruction of signals considered as sparse in their nature. The

exact error generated in the recon- struction of time-varying signals was derived in this thesis. The uniform and random

sampling were considered, together with a generalization of the error depending on the sampling method. For a more

realistic case, the effect of quantization, as a crucial step for the hardware implementation, is analyzed. In the end, the

noise folding effect is considered as well. In addition to the dispersive underwater channel analysis, wideband sonar

images are considered as an important topic in the underwater acoustics. In the literature, only basic forms of signals

were used for the transmission. The usage of various sequences showed interesting results in the reconstruction of

sonar signals. The implementation of compressive sensing techniques on those signals was considered. We showed

that the reconstruction of sonar signals could be signi�cantly improved in detecting and lo- calizing sparse targets.

Dispersive channels introduce multi-component non-stationary signals as an additional challenge to this �eld.

Combining the previously studied re- construction, together with the principles of the polynomial Fourier transform and

mode decomposition, the time-varying components of the sonar signals are successfully detected, decomposed, and

analyzed. The dispersive media was perceived in two different approaches: the decomposi- tion of signals received at a

misaligned sensor, and a signal received from a dispersive isovelocity shallow water environment. Three different

methods were considered: high- resolution local polynomial case, the dual extension of the polynomial Fourier domain,

and a model-function based technique. It is concluded that the model-based method gives the best results in terms of

error, which is expected due to its speci�c nature to 109 Conclusion �nd the appropriately adjusted forms and the values

of corresponding parameters. The method is not sensitive to the noise until the threshold for the detections is reached.

Also, a more general approach, based on the polynomial Fourier transform, is intro- duced. Although the mode forms do

not fully coincide with the polynomial forms, it was seen that a reasonable error rate is achieved, with a quite general

model. The method is further improved by using a sparse decomposition and reconstruction of components using the

iterative algorithm. The presented theory and methods can be extended in various directions. In the decomposition of

the dispersive media, the high-resolution techniques showed promising results combined with the polynomial Fourier

transform. Another interesting course is in the error calculation, which was developed for the time-varying part of the

signals received in the dispersive media. The derivation can be further extended in the direction of the dual polynomial

Fourier transformation domain, as the sparsity domain. The last approach is based on the combination of the

appropriate sequence form selection in the transmission part of the setup. The combination of the suitable sequences,

combined with the dual extension as the sparsity domain and the appropriate error calculation, could result in a robust

solution for further analysis of signals transmitted underwater. Finally, some of the results and developed methods are

applied to the general image denoising problem, showing that the presented results and methods are not strictly limited

to the underwater acoustic signal analysis.
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